Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T08:03:40.119Z Has data issue: false hasContentIssue false

Neuropsychological Profiles Differ among the Three Variants of Primary Progressive Aphasia

Published online by Cambridge University Press:  11 June 2015

Alissa M. Butts
Affiliation:
Department of Psychiatry and Psychology (Neuropsychology), Mayo Clinic, Rochester, Minnesota
Mary M. Machulda*
Affiliation:
Department of Psychiatry and Psychology (Neuropsychology), Mayo Clinic, Rochester, Minnesota
Joseph R. Duffy
Affiliation:
Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, Minnesota
Edythe A. Strand
Affiliation:
Department of Neurology (Speech Pathology), Mayo Clinic, Rochester, Minnesota
Jennifer L. Whitwell
Affiliation:
Department of Radiology, Mayo Clinic, Rochester, Minnesota
Keith A. Josephs
Affiliation:
Department of Neurology (Behavioral Neurology), Mayo Clinic, Rochester, Minnesota
*
Correspondence and reprint requests to: Mary M. Machulda, College of Medicine, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905. E-mail: machulda.mary@mayo.edu

Abstract

The objective of this study was to describe the neuropsychological profiles of the three variants of primary progressive aphasia (PPA). Based on a comprehensive speech and language evaluation, 91 subjects were classified as logopenic (lvPPA=51), semantic (svPPA=13), or agrammatic (agPPA=27). All subjects completed a separate neuropsychological evaluation assessing verbal and visual memory, processing speed, executive function, and visuospatial function. The groups did not differ on demographic variables or on measures of disease duration or aphasia severity. There were group differences on aspects of learning and memory, as well as aspects of executive and visuospatial functions, primarily with the lvPPA group performing lower than the agPPA and svPPA groups. The agPPA group showed subtle deficits consistent with frontal lobe impairment, whereas neurocognitive weaknesses in the svPPA group were restricted to temporal lobe functions. The pattern of neurocognitive dysfunction in lvPPA suggests disease involvement of frontal lobe functions in addition to temporoparietal functions. These neurocognitive findings emphasize the value of a comprehensive neuropsychological evaluation of individuals who present with primary language disturbance, given the pattern of cognitive deficits may provide additive information for differentiating these clinical syndromes. (JINS, 2015, 21, 429–435)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ash, S., Evans, E., O’Shea, J., Powers, J., Boller, A., Weinberg, D., & Grossman, M. (2013). Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology, 81(4), 329336. doi: 10.1212/WNL.0b013e31829c5d0e Google Scholar
Carthery-Goulart, M.T., Knibb, J.A., Patterson, K., & Hodges, J.R. (2012). Semantic dementia versus nonfluent progressive aphasia: Neuropsychological characterization and differentiation. Alzheimer Disease and Associated Disorders, 26(1), 3643. doi: 10.1097/WAD.0b013e318218206e CrossRefGoogle ScholarPubMed
De Renzi, E., & Vignolo, L. (1962). The Token Test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85, 665768.Google Scholar
Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System (DKEFS): Examiner’s manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Duffy, J.R., Peach, R.K., & Strand, E.A. (2007). Progressive apraxia of speech as a sign of motor neuron disease. American Journal of Speech-Language Pathology, 16(3), 198208. doi: 10.1044/1058-0360(2007/025) CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Brambati, S.M., Ginex, V., Ogar, J., Dronkers, N.F., Marcone, A., &Miller, B.L. (2008). The logopenic/phonological variant of primary progressive aphasia. Neurology, 71(16), 12271234. doi: 10.1212/01.wnl.0000320506.79811.da CrossRefGoogle ScholarPubMed
Gorno-Tempini, M.L., Dronkers, N.F., Rankin, K.P., Ogar, J.M., Phengrasamy, L., Rosen, H.J., & Miller, B.L. (2004). Cognition and anatomy in three variants of primary progressive aphasia. Annals of Neurology, 55(3), 335346. doi: 10.1002/ana.10825 Google Scholar
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F.,& Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014. doi: 10.1212/WNL.0b013e31821103e6 Google Scholar
Grossman, M., Powers, J., Ash, S., McMillan, C., Burkholder, L., Irwin, D.,& Trojanowski, J.Q. (2013). Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 127(2), 106120. doi: 10.1016/j.bandl.2012.10.005 CrossRefGoogle ScholarPubMed
Harris, J.M., Gall, C., Thompson, J.C., Richardson, A.M., Neary, D., du Plessis, D.,& Jones, M. (2013). Classification and pathology of primary progressive aphasia. Neurology, 81(21), 18321839. doi: 10.1212/01.wnl.0000436070.28137.7b Google Scholar
Heim, S., Pieperhoff, P., Grande, M., Kuijsten, W., Wellner, B., Saez, L.E., & Amunts, K. (2014). Longitudinal changes in brains of patients with fluent primary progressive aphasia. Brain and Language, 131, 1119. doi: 10.1016/j.bandl.2013.05.012 CrossRefGoogle ScholarPubMed
Hsieh, S., Hodges, J.R., Leyton, C.E., & Mioshi, E. (2012). Longitudinal changes in primary progressive aphasias: Differences in cognitive and dementia staging measures. Dementia and Geriatric Cognitive Disorders, 34(2), 135141. doi: 10.1159/000342347 Google Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E., & Petersen, R.C. (1996). Neuropsychological tests’ norms above age 55: COWAT, BNT, MAE Token, WRAT-R Reading, AMNART, Stroop, TMT, and JLO. The Clinical Neuropsychologist, 10(3), 262278.Google Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E., Petersen, R.C., Kokmen, E.,& Kurland, L.T. (1992). Mayo’s Older Americans Normative Studies: Updated AVLT norms for ages 56 to 97. The Clinical Neuropsychologist, 6(Suppl), 83104.CrossRefGoogle Scholar
Ivnik, R.J., Malec, J.F., Tangalos, E.G., Petersen, R.C., Kokmen, E., & Kurland, L.T. (1990). The Auditory-Verbal Learning Test (AVLT): Norms for ages 55 years and older. A Journal of Consulting and Clinical Psychology, 2(3), 9.Google Scholar
Josephs, K.A., Duffy, J.R., Fossett, T.R., Strand, E.A., Claassen, D.O., Whitwell, J.L.,& Peller, P.J. (2010). Fluorodeoxyglucose F18 positron emission tomography in progressive apraxia of speech and primary progressive aphasia variants. Archives of Neurology, 67(5), 596605. doi: 10.1001/archneurol.2010.78 CrossRefGoogle ScholarPubMed
Josephs, K.A., Duffy, J.R., Strand, E.A., Machulda, M.M., Vemuri, P., Senjem, M.L.,& Whitwell, J.L. (2014). Progranulin-associated PiB-negative logopenic primary progressive aphasia. Journal of Neurology, 261(3), 604614. doi: 10.1007/s00415-014-7243-9 CrossRefGoogle ScholarPubMed
Kertesz, A. (2007). Wester Aphasia Battery (Revised). San Antonio, TX: Psych Corp.Google Scholar
Lansing, A., Ivnik, R., Cullum, C., & Randolph, C. (1999). An empirically derived short from of the Boston naming test. Archives of Clinical Neuropsychology, 14, 481487.Google Scholar
Leyton, C.E., Hornberger, M., Mioshi, E., & Hodges, J.R. (2010). Application of Addenbrooke’s cognitive examination to diagnosis and monitoring of progressive primary aphasia. Dementia and Geriatric Cognitive Disorders, 29(6), 504509. doi: 10.1159/000313980 Google Scholar
Leyton, C.E., Hsieh, S., Mioshi, E., & Hodges, J.R. (2013). Cognitive decline in logopenic aphasia: More than losing words. Neurology, 80(10), 897903. doi: 10.1212/WNL.0b013e318285c15b CrossRefGoogle ScholarPubMed
Machulda, M., Ivnik, R., Smith, G., Ferman, T., Boeve, B., Knopman, D., & Tangalos, E. (2007). Mayo’s Older Americans Normative Studies: Visual form discrimination and copy trial of the Rey-Osterrieth complex figure. Journal of Clinical and Experimental Neuropsychology, 29(4), 377384.Google Scholar
Machulda, M.M., Whitwell, J.L., Duffy, J.R., Strand, E.A., Dean, P.M., Senjem, M.L., &Josephs, K.A. (2013). Identification of an atypical variant of logopenic progressive aphasia. Brain and Language, 127(2), 139144. doi: 10.1016/j.bandl.2013.02.007 Google Scholar
Mesulam, M.-M., & Weintraub, S. (2014). Is it time to revisit the classification guidelines for primary progressive aphasia? Neurology, 82, 11081109. doi: 10.1212/wnl.0000000000000272 Google Scholar
Mesulam, M.M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11(6), 592598. doi: 10.1002/ana.410110607 Google Scholar
Osterrieth, P. (1944). Le test de copie d’une figure complex: Coontribution a l’etude de la perception et de la memoire. Archives de Psychologie, 30, 286356.Google Scholar
Rabinovici, G.D., Jagust, W.J., Furst, A.J., Ogar, J.M., Racine, C.A., Mormino, E.C., & Gorno-Tempini, M.L. (2008). Aβ amyloid and glucose metabolism in three variants of primary progressive aphasia. Annals of Neurology, 64(4), 388401. doi: 10.1002/ana.21451 Google Scholar
Reitan, R. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual & Motor Skills, 8, 271276.CrossRefGoogle Scholar
Reitan, R.M., & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.Google Scholar
Rohrer, J.D., Ridgway, G.R., Crutch, S.J., Hailstone, J., Goll, J.C., Clarkson, M.J.,& Warren, J.D. (2010). Progressive logopenic/phonological aphasia: Erosion of the language network. Neuroimage, 49(1), 984993. doi: 10.1016/j.neuroimage.2009.08.002 Google Scholar
Warrington, E., & James, M. (1991). The Visual Object and Space Perception Battery. Bury St. Edmunds, Suffolk, England: Thames Valley Test Company.Google Scholar
Wechsler, D. (1997). Wechsler Memory Scale-III. New York: Psychological Corporation.Google Scholar
Weintraub, S., Rogalski, E., Shaw, E., Sawlani, S., Rademaker, A., Wieneke, C.,& Mesulam, M.M. (2013). Verbal and nonverbal memory in primary progressive aphasia: The Three Words-Three Shapes Test. Behavioural Neurology, 26(1-2), 6776. doi: 10.3233/ben-2012-110239 CrossRefGoogle ScholarPubMed
Wicklund, A.H., Rademaker, A., Johnson, N., Weitner, B.B., & Weintraub, S. (2007). Rate of cognitive change measured by neuropsychologic test performance in three distinct dementia syndromes. Alzheimer Disease and Associated Disorders, 21(4), S70S78.Google Scholar
Wicklund, M.R., Duffy, J.R., Strand, E.A., Machulda, M.M., Whitwell, J.L., & Josephs, K.A. (2014). Quantitative application of the primary progressive aphasia consensus criteria. Neurology, 82(13), 11191126. doi: 10.1212/wnl.0000000000000261 CrossRefGoogle ScholarPubMed