Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T05:43:12.689Z Has data issue: false hasContentIssue false

Performance on the ROCF at 8 Years Predicts Academic Achievement at 16 Years in Individuals with Dextro-Transposition of the Great Arteries

Published online by Cambridge University Press:  14 January 2021

Matthew E. Fasano-McCarron
Affiliation:
Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
Jane Holmes Bernstein
Affiliation:
Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
Deborah P. Waber
Affiliation:
Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
Jane W. Newburger
Affiliation:
Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
David R. DeMaso
Affiliation:
Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
David C. Bellinger
Affiliation:
Departments of Neurology and Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
Adam R. Cassidy*
Affiliation:
Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
*
*Correspondence and reprint requests to: Adam R. Cassidy, PhD, ABPP, Center for Neuropsychology, Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA. Email: adam.cassidy@childrens.harvard.edu

Abstract

Objective:

This study examined longitudinal associations between performance on the Rey–Osterrieth Complex Figure–Developmental Scoring System (ROCF-DSS) at 8 years of age and academic outcomes at 16 years of age in 133 children with dextro-transposition of the great arteries (d-TGA).

Method:

The ROCF-DSS was administered at the age of 8 and the Wechsler Individual Achievement Test, First and Second Edition (WIAT/WIAT-II) at the ages of 8 and 16, respectively. ROCF-DSS protocols were classified by Organization (Organized/Disorganized) and Style (Part-oriented/Holistic). Two-way univariate (ROCF-DSS Organization × Style) ANCOVAs were computed with 16-year academic outcomes as the dependent variables and socioeconomic status (SES) as the covariate.

Results:

The Organization × Style interaction was not statistically significant. However, ROCF-DSS Organization at 8 years was significantly associated with Reading, Math, Associative, and Assembled academic skills at 16 years, with better organization predicting better academic performance.

Conclusions:

Performance on the ROCF-DSS, a complex visual-spatial problem-solving task, in children with d-TGA can forecast academic performance in both reading and mathematics nearly a decade later. These findings may have implications for identifying risk in children with other medical and neurodevelopmental disorders affecting brain development.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allan, N.P., Hume, L.E., Allan, D.M., Farrington, A.L., & Lonigan, C.J. (2014). Relations between inhibitory control and the development of academic skills in preschool and kindergarten: A meta-analysis. Developmental Psychology, 50(10), 23682379.CrossRefGoogle ScholarPubMed
Baron, I.S. & Rey-Casserly, C. (2010). Extremely preterm birth outcome: a review of four decades of cognitive research. Neuropsychology Review, 20(4), 430452. https://doi.org/10.1007/s11065-010-9132-z CrossRefGoogle ScholarPubMed
Bean Jaworski, J.L., White, M.T., DeMaso, D.R., Newburger, J.W., Bellinger, D.C., & Cassidy, A.R. (2017). Visuospatial processing in adolescents with critical congenital heart disease: Organization, integration, and implications for academic achievement. Child Neuropsychology, 24(4), 451468. https://doi.org/10.1080/09297049.2017.1283396 CrossRefGoogle ScholarPubMed
Bean Jaworski, J.L., White, M.T., DeMaso, D.R., Newburger, J.W., Bellinger, D.C., & Cassidy, A.R. (2018). Visuospatial processing in adolescents with critical congenital heart disease: Organization, integration, and implications for academic achievement. Child Neuropsychology, 24(4), 451468. https://doi.org/10.1080/09297049.2017.1283396 CrossRefGoogle ScholarPubMed
Bellinger, D.C., Bernstein, J.H., Kirkwood, M.W., Rappaport, L.A., & Newburger, J.W. (2003). Visual-Spatial skills in children after open-heart surgery. Journal of Developmental and Behavioral Pediatrics: JDBP, 24(3), 169179. http://www.ncbi.nlm.nih.gov/pubmed/12806229 CrossRefGoogle ScholarPubMed
Bellinger, D.C., Jonas, R.A., Rappaport, L.A., Wypij, D., Wernovsky, G., Kuban, K.C., … Strand, R.D. (1995). Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. The New England Journal of Medicine, 332(9), 549555. https://doi.org/10.1056/NEJM199503023320901 CrossRefGoogle ScholarPubMed
Bellinger, D.C., Rappaport, L.A., Wypij, D., Wernovsky, G., & Newburger, J.W. (1997). Patterns of developmental dysfunction after surgery during infancy to correct transposition of the great arteries. Developmental and Behavioral Pediatrics, 18(2), 7583.CrossRefGoogle ScholarPubMed
Bellinger, D.C., Wypij, D., DuPlessis, A.J., Rappaport, L.A., Jonas, R.A., Wernovsky, G., & Newburger, J.W. (2003). Neurodevelopmental status at eight years in children with dextro-transposition of the great arteries: The Boston Circulatory Arrest Trial. The Journal of Thoracic and Cardiovascular Surgery, 126(5), 13851396. https://doi.org/10.1016/S0022-5223(03)00711-6 CrossRefGoogle ScholarPubMed
Bellinger, D.C., Wypij, D., Kuban, K.C.K., Rappaport, L.A., Hickey, P.R., Wernovsky, G., … Newburger, J.W. (1999). Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation, 100(5), 526532. https://doi.org/10.1161/01.CIR.100.5.526 CrossRefGoogle ScholarPubMed
Bellinger, D.C., Wypij, D., Rivkin, M.J., DeMaso, D.R., Robertson, R.L., Dunbar-Masterson, C., … Newburger, J.W. (2011). Adolescents with d-transposition of the great arteries corrected with the arterial switch procedure: Neuropsychological assessment and structural brain imaging. Circulation, 124(12), 13611369. https://doi.org/10.1161/CIRCULATIONAHA.111.026963 CrossRefGoogle ScholarPubMed
Bernstein, J.H. & Waber, D.P. (1996). Developmental Scoring System for the Rey–Osterrieth Complex Figure (DSS-ROCF). Psychological Assessment Resources.Google Scholar
Bucholz, E.M., Sleeper, L.A., & Newburger, J.W. (2018). Neighborhood socioeconomic status and outcomes following the norwood procedure: An analysis of the pediatric heart network single ventricle reconstruction trial public data set emily. Journal of the American Heart Association, 7, 19. https://doi.org/10.1161/JAHA.117.007065 CrossRefGoogle Scholar
Bull, R. & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8(1), 3641. https://doi.org/10.1111/cdep.12059 CrossRefGoogle Scholar
Calderon, J., Bonnet, D., Courtin, C., Concordet, S., Plumet, M.-H., & Angeard, N. (2010). Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Developmental Medicine and Child Neurology, 52(12), 11391144. https://doi.org/10.1111/j.1469-8749.2010.03735.x CrossRefGoogle ScholarPubMed
Calderon, J., Jambaqué, I., & Bonnet, D. (2014). Executive functions development in 5- to 7-year-old children with transposition of the great arteries: A longitudinal study. Developmental Neuropsychology, 39(5), 3741. https://doi.org/10.1080/87565641.2014.916709 CrossRefGoogle ScholarPubMed
Cassidy, A.R., Ilardi, D., Bowen, S.R., Hampton, L.E., Heinrich, K.P., Loman, M.M., … Wolfe, K.R. (2018). Congenital heart disease: A primer for the pediatric neuropsychologist. Child Neuropsychology, 24(7), 859902. https://doi.org/10.1080/09297049.2017.1373758 CrossRefGoogle ScholarPubMed
Cassidy, A.R., White, M.T., DeMaso, D.R., Newburger, J.W., & Bellinger, D.C. (2015). Executive function in children and adolescents with critical cyanotic congenital heart disease. Journal of the International Neuropsychological Society, 20, 3449. https://doi.org/10.1017/S1355617714001027 CrossRefGoogle Scholar
Davey, B., Sinha, R., Lee, J.H., Gauthier, M., & Flores, G. (2020). Social determinants of health and outcomes for children and adults with congenital heart disease: A systematic review. Pediatric Research, 01. https://doi.org/10.1038/s41390-020-01196-6 Google ScholarPubMed
DeMaso, D.R., Labella, M., Taylor, G.A., Forbes, P.W., Stopp, C., Bellinger, D.C., … Newburger, J.W. (2014). Psychiatric disorders and function in adolescents with d-transposition of the great arteries. Journal of Pediatrics, 165(4), 760766. https://doi.org/10.1016/j.jpeds.2014.06.029 CrossRefGoogle ScholarPubMed
Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A. & Fletcher, J.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15, 331343.CrossRefGoogle Scholar
Dennis, M., Landry, S.H., Barnes, M., & Fletcher, J.M. (2006). A model of neurocognitive function in spina bifida over the life span. Journal of the International Neuropsychological Society, 12(2), 285296.CrossRefGoogle Scholar
Duijff, S.N., Klaassen, P.W.J., de Veye, H.F.N.S., Beemer, F.A., Sinnema, G., & Vorstman, J.A.S. (2012). Cognitive development in children with 22q11.2 deletion syndrome. The British Journal of Psychiatry: The Journal of Mental Science, 200(6), 462468. https://doi.org/10.1192/bjp.bp.111.097139 CrossRefGoogle ScholarPubMed
Farah, M.J. (2017). Review the neuroscience of socioeconomic status: Correlates, causes, and consequences. Neuron, 96(1), 5671. https://doi.org/10.1016/j.neuron.2017.08.034 CrossRefGoogle ScholarPubMed
Hoffman, J.I.E., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39(12), 18901900.CrossRefGoogle ScholarPubMed
Hollingshead, A.A. (1975). Four-Factor Index of Social Status. New Haven, CT: Yale University.Google Scholar
Lehtonen, A., Garg, S., Roberts, S.A., Trump, D., Evans, D.G., Green, J., & Huson, S.M. (2015). Cognition in children with neurofibromatosis type 1: Data from a population-based study. Developmental Medicine and Child Neurology, 57(7), 645651. https://doi.org/10.1111/dmcn.12734 CrossRefGoogle ScholarPubMed
Licht, D.J., Shera, D.M., Clancy, R.R., Wernovsky, G., Montenegro, L.M., Nicolson, S.C., … Vossough, A. (2009). Brain maturation is delayed in infants with complex congenital heart defects. The Journal of Thoracic and Cardiovascular Surgery, 137(3), 529536; discussion 536–537. https://doi.org/10.1016/j.jtcvs.2008.10.025 CrossRefGoogle ScholarPubMed
Limperopoulos, C., Tworetzky, W., McElhinney, D.B., Newburger, J.W., Brown, D.W., Robertson, R.L., … du Plessis, A.J. (2010). Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation, 121(1), 2633. https://doi.org/10.1161/CIRCULATIONAHA.109.865568 CrossRefGoogle ScholarPubMed
Miller, M. & Hinshaw, S.P. (2010). Does childhood executive function predict adolescent functional outcomes in girls with ADHD? Journal of Abnormal Child Psychology, 38(3), 315326. https://doi.org/10.1007/s10802-009-9369-2 CrossRefGoogle ScholarPubMed
Newburger, J.W., Jonas, R.A., Wernovsky, G., Wypij, D., Hickey, P.R., Kuban, K.C.K., … Ware, J.H. (1993). A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. New England Journal of Medicine, 329(15), 10571064.CrossRefGoogle ScholarPubMed
Osterrieth, P.A. (1944). Le test de copie d’une figure complexe; contribution à l’étude de la perception et de la mémoire [Test of copying a complex figure; contribution to the study of perception and memory]. Archives de Psychologie, 30, 206356.Google Scholar
Oster, M.E., Lee, K.A., Honein, M.A., Riehle-Colarusso, T., Shin, M., & Correa, A. (2013). Temporal Trends in Survival Among Infants With Critical Congenital Heart Defects. Pediatrics, 131(5), e1502e1508. https://doi.org/10.1542/peds.2012-3435 CrossRefGoogle ScholarPubMed
Peterson, R.L. & Pennington, B.F. (2015). Developmental Dyslexia. Annual Review of Clinical Psychology, 11(1), 283307. https://doi.org/10.1146/annurev-clinpsy-032814-112842 CrossRefGoogle ScholarPubMed
Psychological Corp. (2002). The Wechsler Individual Achievement Test (2nd ed). San Antonio, TX: Psychological Corp.Google Scholar
Reller, M.D., Strickland, M.J., Riehle-Colarusso, T., Mahle, W.T., & Correa, A. (2008). Prevalence of Congenital Heart Defects in Metropolitan Atlanta, 1998–2005. Journal of Pediatrics, 153(6), 807813. https://doi.org/10.1016/j.jpeds.2008.05.059 CrossRefGoogle Scholar
Rivkin, M.J., Watson, C.G., Scoppettuolo, L.A., Wypij, D., Vajapeyam, S., Bellinger, D.C., … Newburger, J.W. (2013). Adolescents with D-transposition of the great arteries repaired in early infancy demonstrate reduced white matter microstructure associated with clinical risk factors. The Journal of Thoracic and Cardiovascular Surgery, 146(3), 543–9.e1. https://doi.org/10.1016/j.jtcvs.2012.12.006 CrossRefGoogle ScholarPubMed
Rollins, C.K., Watson, C.G., Asaro, L.A., Wypij, D., Vajapeyam, S., Bellinger, D.C., … & Rivkin, M.J. (2014). White Matter Microstructure and Cognition in Adolescents with Congenital Heart Disease. The Journal of Pediatrics, 165(5), 936–944.e2. https://doi.org/10.1016/j.jpeds.2014.07.028 CrossRefGoogle ScholarPubMed
Schmithorst, V.J., Panigrahy, A., Gaynor, J.W., Watson, C.G., Lee, V., Bellinger, D.C., … Newburger, J.W. (2016). Organizational topology of brain and its relationship to ADHD in adolescents with d-transposition of the great arteries. Brain and Behavior, 504, e00504. https://doi.org/10.1002/brb3.504 Google Scholar
Sirin, S.R. (2005). Socioeconomic status and academic achievement: A meta-analytic review of research. Review of Educational Research, 75, 417453.CrossRefGoogle Scholar
Spector, L.G., Menk, J.S., Knight, J.H., McCracken, C., Thomas, A.S., Vinocur, J.M., … Kochilas, L. (2018). Trends in long-term mortality after congenital heart surgery. Journal of the American College of Cardiology, 71(21), 24342446. https://doi.org/10.1016/j.jacc.2018.03.491 CrossRefGoogle ScholarPubMed
Sun, L., Macgowan, C., Sled, J., Yoo, S., Manlhiot, C., Porayette, P., … Seed, M. (2015). Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation, 131, 13131323. https://doi.org/10.1161/CIRCULATIONAHA.114.013051 CrossRefGoogle ScholarPubMed
Tulving, E. & Schacter, D.L. (1990). Priming and human memory systems. Science, 247(4940), 301306.CrossRefGoogle ScholarPubMed
Van Der Linde, D., Konings, E.E.M., Slager, M.A., Witsenburg, M., Helbing, W.A., Takkenberg, J.J.M., & Roos-Hesselink, J.W. (2011). Birth prevalence of congenital heart disease worldwide: A systematic review and meta-analysis. Journal of the American College of Cardiology, 58(21), 22412247. https://doi.org/10.1016/j.jacc.2011.08.025 CrossRefGoogle ScholarPubMed
Warnes, C.A., Liberthson, R., Danielson, G.K., Dore, A., Harris, L., Hoffman, J.I., … Webb, G.D. (2001). Task force 1: The changing profile of congenital heart disease in adult life. Journal of the American College of Cardiology, 37(5), 11701175. https://doi.org/10.1016/S0735-1097(01)01272-4 CrossRefGoogle ScholarPubMed
Watson, C.G., Asaro, L.A., Wypij, D., Robertson, R.L., Newburger, J.W., & Rivkin, M.J. (2016). Altered gray matter in adolescents with d-transposition of the great arteries. Journal of Pediatrics, 169, 36–43e1. https://doi.org/10.1016/j.jpeds.2015.09.084 CrossRefGoogle ScholarPubMed
Watson, C.G., Stopp, C., Newburger, J.W., & Rivkin, M.J. (2018). Graph theory analysis of cortical thickness networks in adolescents with d-transposition of the great arteries. Brain and Behavior, August 2017, e00834. https://doi.org/10.1002/brb3.834 CrossRefGoogle ScholarPubMed
Wechsler, D. (1991). Wechsler Intelligence Scale for Children (3rd ed). Psychological Corporation.Google Scholar
Wilson, W.M., Smith-Parrish, M., Marino, B.S., & Kovacs, A.H. (2015). Progress in Pediatric Cardiology Neurodevelopmental and psychosocial outcomes across the congenital heart disease lifespan. Progress in Pediatric Cardiology, 39(2), 113118. https://doi.org/10.1016/j.ppedcard.2015.10.011 CrossRefGoogle Scholar
Xie, F., Zhang, L., Chen, X., & Xin, Z. (2019). Is Spatial Ability Related to Mathematical Ability: a Meta-Analysis. Educational Psychology Review, 33, 113155. https://doi.org/10.1007/s10648-019-09496-y Google Scholar