Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T10:11:45.518Z Has data issue: false hasContentIssue false

Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia

Published online by Cambridge University Press:  12 September 2019

Jet M. J. Vonk*
Affiliation:
Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
Roel Jonkers
Affiliation:
Department of Linguistics, University of Groningen, The Netherlands
H. Isabel Hubbard
Affiliation:
Department of Communication Sciences and Disorders, University of Kentucky, Lexington, KY, USA
Maria Luisa Gorno-Tempini
Affiliation:
Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA 94158, USA
Adam M. Brickman
Affiliation:
Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
Loraine K. Obler
Affiliation:
Department of Speech-Language-Hearing Sciences, The Graduate Center, City University of New York, New York, NY, USA
*
*Correspondence and reprint requests to: Jet M. J. Vonk, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 630 W 168th St, P&S Box 16, New York, NY 10032-3784, USA, Tel: (212) 342 1399, E-mail: jv2528@cumc.columbia.edu

Abstract

Objective:

To determine the effect of three psycholinguistic variables—lexical frequency, age of acquisition (AoA), and neighborhood density (ND)—on lexical-semantic processing in individuals with non-fluent (nfvPPA), logopenic (lvPPA), and semantic primary progressive aphasia (svPPA). Identifying the scope and independence of these features can provide valuable information about the organization of words in our mind and brain.

Method:

We administered a lexical decision task—with words carefully selected to permit distinguishing lexical frequency, AoA, and orthographic ND effects—to 41 individuals with PPA (13 nfvPPA, 14 lvPPA, 14 svPPA) and 25 controls.

Results:

Of the psycholinguistic variables studied, lexical frequency had the largest influence on lexical-semantic processing, but AoA and ND also played an independent role. The results reflect a brain-language relationship with different proportional effects of frequency, AoA, and ND in the PPA variants, in a pattern that is consistent with the organization of the mental lexicon. Individuals with nfvPPA and lvPPA experienced an ND effect consistent with the role of inferior frontal and temporoparietal regions in lexical analysis and word form processing. By contrast, individuals with svPPA experienced an AoA effect consistent with the role of the anterior temporal lobe in semantic processing.

Conclusions:

The findings are in line with a hierarchical mental lexicon structure with a conceptual (semantic) and a lexeme (word-form) level, such that a selective deficit at one of these levels of the mental lexicon manifests differently in lexical-semantic processing performance, consistent with the affected language-specific brain region in each PPA variant.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguinis, H. (1995). Statistical power problems with moderated multiple regression in management research. Journal of Management, 21(6), 11411158.Google Scholar
Balota, D.A., Cortese, M.J., Sergent-Marshall, S.D., Spieler, D.H., & Yap, M. (2004). Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133(2), 283316.CrossRefGoogle ScholarPubMed
Balota, D.A., Yap, M.J., Hutchison, K.A., Cortese, M.J., Kessler, B., Loftis, B., Neely, J.H., Nelson, D.L., Simpson, G.B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3), 445459.CrossRefGoogle ScholarPubMed
Barry, C., Hirsh, K.W., Johnston, R.A., & Williams, C.L. (2001). Age of acquisition, word frequency, and the locus of repetition priming of picture naming. Journal of Memory and Language, 44(3), 350375.CrossRefGoogle Scholar
Binney, R.J., Embleton, K.V., Jefferies, E., Parker, G.J., & Lambon Ralph, M.A. (2010). The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cerebral Cortex, 20(11), 27282738.CrossRefGoogle ScholarPubMed
Bock, K. & Levelt, W. (1994). Language production: Grammatical encoding, In Gernsbacher, M.A. (Ed.), Handbook of psycholinguistics (pp. 945984). San Diego, CA: Academic Press.Google Scholar
Brown, G.D.A. & Watson, F.L. (1987). First in, first out: Word learning age and spoken word frequency as predictors of word familiarity and word naming latency. Memory & Cognition, 15(3), 208216.CrossRefGoogle ScholarPubMed
Brysbaert, M. & Ghyselinck, M. (2006). The effect of age of acquisition: partly frequency related, partly frequency independent. Visual Cognition, 13(7–8), 9921011.CrossRefGoogle Scholar
Brysbaert, M. & New, B. (2009). Moving beyond Kučera and Francis: a critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977990.CrossRefGoogle ScholarPubMed
Brysbaert, M., Stevens, M., De Deyne, S., Voorspoels, W., & Storms, G. (2014). Norms of age of acquisition and concreteness for 30,000 Dutch words. Acta Psychologica, 150, 8084.CrossRefGoogle ScholarPubMed
Brysbaert, M., Van Wijnendaele, I., & De Deyne, S. (2000). Age-of-acquisition effects in semantic processing tasks. Acta Psychologica, 104(2), 215226.CrossRefGoogle ScholarPubMed
Carreiras, M., Perea, M., & Grainger, J. (1997). Effects of orthographic neighborhood in visual word recognition: cross-task comparisons. Journal of Experimental Psychology-Learning Memory and Cognition, 23(4), 857871.CrossRefGoogle ScholarPubMed
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155159.CrossRefGoogle ScholarPubMed
Coltheart, M., Davelaar, E., Jonasson, T., & Besner, D. (1977). Access to the internal lexicon, In Dornic, S. (Ed.), Attention and performance VI (pp. 535555). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cortese, M.J. & Khanna, M.M. (2007). Age of acquisition predicts naming and lexical-decision performance above and beyond 22 other predictor variables: an analysis of 2,342 words. The Quarterly Journal of Experimental Psychology, 60(8), 10721082.CrossRefGoogle ScholarPubMed
Cortese, M.J. & Schock, J. (2013). Imageability and age of acquisition effects in disyllabic word recognition. The Quarterly Journal of Experimental Psychology, 66(5), 946972.CrossRefGoogle ScholarPubMed
Diesfeldt, H. (2011). The phonological variant of primary progressive aphasia, a single case study. Tijdschrift Gerontologie Geriatrie, 42(2), 7990.CrossRefGoogle ScholarPubMed
Ferrand, L., New, B., Brysbaert, M., Keuleers, E., Bonin, P., Méot, A., Augustinova, M., & Pallier, C. (2010). The French Lexicon Project: lexical decision data for 38,840 French words and 38,840 pseudowords. Behavior Research Methods, 42(2), 488496.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Gerhand, S. & Barry, C. (1998). Word frequency effects in oral reading are not merely age-of-acquisition effects in disguise. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(2), 267283.Google Scholar
Gerhand, S. & Barry, C. (1999). Age of acquisition, word frequency, and the role of phonology in the lexical decision task. Memory & Cognition, 27(4), 592602.CrossRefGoogle ScholarPubMed
Gilhooly, K.J. & Logie, R.H. (1982). Word age-of-acquisition and lexical decision making. Acta Psychologica, 50(1), 2134.CrossRefGoogle Scholar
Gorno-Tempini, M.L., Hillis, A.E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S.F., Ogar, J.M., Rohrer, J.D., Black, S., Boeve, B.F., Manes, F., Dronkers, N.F., Vandenberghe, R., Rascovsky, K., Patterson, K., Miller, B.L., Knopman, D.S., Hodges, J.R., Mesulam, M.M., & Grossman, M. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 10061014.CrossRefGoogle ScholarPubMed
Hirsh, K.W. & Funnell, E. (1995). Those old, familiar things: age of acquisition, familiarity and lexical access in progressive aphasia. Journal of Neurolinguistics, 9(1), 2332.CrossRefGoogle Scholar
IBM Corp. (2016). IBM SPSS Statistics for Windows, Version 24. Armonk, NY: IBM Corp.Google Scholar
Keuleers, E. & Brysbaert, M. (2010). Wuggy: a multilingual pseudoword generator. Behavior Research Methods, 42(3), 627633.CrossRefGoogle ScholarPubMed
Keuleers, E., Diependaele, K., & Brysbaert, M. (2010). Practice effects in large-scale visual word recognition studies: a lexical decision study on 14,000 Dutch mono-and disyllabic words and nonwords. Frontiers in Psychology, 1(174), 115.CrossRefGoogle Scholar
Keuleers, E., Lacey, P., Rastle, K., & Brysbaert, M. (2012). The British Lexicon Project: lexical decision data for 28,730 monosyllabic and disyllabic English words. Behavior Research Methods, 44(1), 287304.CrossRefGoogle ScholarPubMed
Kielar, A., Deschamps, T., Jokel, R., & Meltzer, J. (2018). Abnormal language-related oscillatory responses in primary progressive aphasia. NeuroImage: Clinical, 18, 560574.CrossRefGoogle ScholarPubMed
Kremin, H., Perrier, D., De Wilde, M., Dordain, M., Le Bayon, A., Gatignol, P., Rabine, C., Corbineau, M., Lehoux, E., & Arabia, C. (2001). Factors predicting success in picture naming in Alzheimer’s disease and primary progressive aphasia. Brain and Cognition, 46(1), 180183.CrossRefGoogle ScholarPubMed
Kuperman, V., Stadthagen-Gonzalez, H., & Brysbaert, M. (2012). Age-of-acquisition ratings for 30,000 English words. Behavior Research Methods, 44(4), 978990.CrossRefGoogle ScholarPubMed
Laganaro, M., Croisier, M., Bagou, O., & Assal, F. (2012). Progressive apraxia of speech as a window into the study of speech planning processes. Cortex, 48(8), 963971.CrossRefGoogle Scholar
Lambon Ralph, M.A., Sage, K., Green, H., Berthier, M.L., Maritnez Cuitin, M., Torralva, T., Manes, F., & Patterson, K. (2011). El-La: the impact of degraded semantic representations on knowledge of grammatical gender in semantic dementia. Acta Neuropsychologica, 9(2), 1151132.Google Scholar
Levelt, W.J.M., Roelofs, A., & Meyer, A.S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22(1), 138.CrossRefGoogle ScholarPubMed
Lynch, C.A., Walsh, C., Blanco, A., Moran, M., Coen, R.F., Walsh, J.B., & Lawlor, B.A. (2006). The clinical dementia rating sum of box score in mild dementia. Dementia and Geriatric Cognitive Disorders, 21(1), 4043.CrossRefGoogle ScholarPubMed
Macmillan, N.A. (2002). Signal detection theory, In Wixted, J. & Pashler, H. (Eds.), Stevens’ handbook of experimental psychology. Volume 4: Methodology in experimental psychology (3 ed., pp. 4390). New York, NY: John Wiley & Sons.Google Scholar
Marcotte, K., Graham, N.L., Black, S.E., Tang-Wai, D., Chow, T.W., Freedman, M., Rochon, E., & Leonard, C. (2014). Verb production in the nonfluent and semantic variants of primary progressive aphasia: the influence of lexical and semantic factors. Cognitive Neuropsychology, 31(7–8), 565583.CrossRefGoogle ScholarPubMed
McClelland, G.H. & Judd, C.M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114(2), 376.CrossRefGoogle ScholarPubMed
Middleton, E.L. & Schwartz, M.F. (2010). Density pervades: an analysis of phonological neighbourhood density effects in aphasic speakers with different types of naming impairment. Cognitive Neuropsychology, 27(5), 401427.CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 24122414.CrossRefGoogle ScholarPubMed
Morrison, C.M., Ellis, A.W., & Quinlan, P.T. (1992). Age of acquisition, not word frequency, affects object naming, not object recognition. Memory & Cognition, 20(6), 705714.CrossRefGoogle Scholar
Mummery, C.J., Patterson, K., Price, C.J., Ashburner, J., Frackowiak, R.S., & Hodges, J.R. (2000). A voxel‐based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Annals of Neurology, 47(1), 3645.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Nilakantan, A.S., Voss, J.L., Weintraub, S., Mesulam, M.-M., & Rogalski, E.J. (2017). Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia. Neuropsychologia, 100, 1017.CrossRefGoogle ScholarPubMed
Nusbaum, H.C., Pisoni, D.B., & Davis, C.K. (1984). Sizing up the Hoosier mental lexicon: measuring the familiarity of 20,000 words. Research on Speech Perception Progress Report, 10(10), 357376.Google Scholar
Obler, L.K., Obermann, L., Samuels, I., & Albert, M.L. (1999). Written input to enhance comprehension in dementia of the Alzheimer’s type. Language and Communication in Old Age: Multidisciplinary Perspectives, 9, 63.Google Scholar
Patterson, K., Lambon Ralph, M.A., Jefferies, E., Woollams, A., Jones, R., Hodges, J.R., & Rogers, T.T. (2006). “Presemantic” cognition in semantic dementia: six deficits in search of an explanation. Journal of Cognitive Neuroscience, 18(2), 169183.CrossRefGoogle ScholarPubMed
Pobric, G., Jefferies, E., & Ralph, M.A.L. (2010). Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia, 48(5), 13361342.CrossRefGoogle ScholarPubMed
Pollatsek, A., Perea, M., & Binder, K.S. (1999). The effects of "neighborhood size" in reading and lexical decision. Journal of Experimental Psychology: Human Perception and Performance, 25(4), 11421158.Google ScholarPubMed
Roelofs, A., Meyer, A.S., & Levelt, W.J.M. (1996). Interaction between semantic and orthographic factors in conceptually driven naming: comment on Starreveld and La Heij (1995). Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 246251.Google Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime User’s Guide. Pittsburgh, PA: Psychology Software Tools, Inc. Google Scholar
Sears, C.R., Hino, Y., & Lupker, S.J. (1995). Neighborhood size and neighborhood frequency effects in word recognition. Journal of Experimental Psychology: Human Perception and Performance, 21(4), 876900.Google Scholar
Shaywitz, S.E., Shaywitz, B.A., Pugh, K.R., Fulbright, R.K., Constable, R.T., Mencl, W.E., Shankweiler, D.P., Liberman, A.M., Skudlarski, P., Fletcher, J.M., Katz, L., Marchione, K.E., Lacadie, C., Gatenby, C., & Gore, J.C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences of the United States of America, 95(5), 26362641.CrossRefGoogle ScholarPubMed
Steyvers, M. & Tenenbaum, J.B. (2005). The large‐scale structure of semantic networks: statistical analyses and a model of semantic growth. Cognitive Science, 29(1), 4178.CrossRefGoogle Scholar
Taylor, A. (2015). Standardised effect size in a mixed/multilevel model. Department of Psychology, Macquarie University. Retrieved from http://www.psy.mq.edu.au/psystat/documents/standardised_effect_size_in_mixed_ML_models.pdf Google Scholar
Treiman, R., Mullennix, J., Bijeljac-Babic, R., & Richmond-Welty, E.D. (1995). The special role of rimes in the description, use, and acquisition of English orthography. Journal of Experimental Psychology: General, 124(2), 107136.CrossRefGoogle ScholarPubMed
Turner, J.E., Valentine, T., & Ellis, A.W. (1998). Contrasting effects of age of acquisition and word frequency on auditory and visual lexical decision. Memory & Cognition, 26(6), 12821291.CrossRefGoogle ScholarPubMed
Vonk, J.M.J. (2017). Cognitive and neurobiological degeneration of the mental lexicon in primary progressive aphasia. (Doctoral Dissertation). New York, NY: The Graduate Center of the City University of New York.Google Scholar
Wilson, S.M., Brandt, T.H., Henry, M.L., Babiak, M., Ogar, J.M., Salli, C., Wilson, L., Peralta, K., Miller, B.L., & Gorno-Tempini, M.L. (2014). Inflectional morphology in primary progressive aphasia: an elicited production study. Brain and Language, 136, 5868.CrossRefGoogle ScholarPubMed
Yarkoni, T., Balota, D., & Yap, M. (2008). Moving beyond Coltheart’s N: a new measure of orthographic similarity. Psychonomic Bulletin & Review, 15(5), 971979.CrossRefGoogle ScholarPubMed
Zevin, J.D. & Seidenberg, M.S. (2002). Age of acquisition effects in word reading and other tasks. Journal of Memory and Language, 47(1), 129.CrossRefGoogle Scholar
Zipf, G.K. (1935). The Psychobiology of Language. Boston, MA: Houghton Mifflin.Google Scholar