Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T22:25:02.793Z Has data issue: false hasContentIssue false

Sex differences in Parkinson disease-associated episodic memory and processing speed deficits

Published online by Cambridge University Press:  27 March 2023

Tyler H. Reekes
Affiliation:
Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA
Christopher I. Higginson
Affiliation:
Department of Psychology, Loyola University Maryland, Baltimore, MD, USA
Karen A. Sigvardt
Affiliation:
Department of Neurology, University of California Davis, Davis, CA, USA
David S. King
Affiliation:
Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
Dawn Levine
Affiliation:
Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
Vicki L. Wheelock
Affiliation:
Department of Neurology, University of California Davis, Davis, CA, USA Clinical Functional Neuroscience Department, Kaiser Permanente Northern California, Sacramento, CA, USA
Elizabeth A. Disbrow*
Affiliation:
Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA LSU Health Shreveport Center for Brain Health, Shreveport, LA, USA Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
*
Corresponding author: Elizabeth A. Disbrow, email: elizabeth.disbrow@lsuhs.edu

Abstract

Objectives:

This study aims to address a gap in the data on cognitive sex differences in persons living with Parkinson disease (PD). There is some evidence that cognitive dysfunction is more severe in male PD, however data on episodic memory and processing speed is incomplete.

Methods:

One hundred and sixty-seven individuals with a diagnosis of PD were included in this study. Fifty-six of those individuals identified as female. The California Verbal Learning Test 1st edition and the Wechsler Memory Scale 3rd edition were used to evaluate verbal and visuospatial episodic memory and the Wechsler Adult Intelligence Scale 3rd edition was used to evaluate processing speed. Multivariate analysis of covariance was used to identify sex-specific differences across groups.

Results:

Our results show that males with PD performed significantly worse than females in verbal and visuospatial recall as well as a trend for the processing speed task of coding.

Conclusions:

Our finding of superior performance among females with PD in verbal episodic memory is consistent with reports in both healthy and PD individuals; however, females outperforming males in measures of visuospatial episodic memory is unique to PD. Cognitive deficits preferentially affecting males appear to be associated with frontal lobe-related function. Therefore, males may represent a disease subgroup more susceptible to disease mechanisms affecting frontal lobe deterioration and cognitive disturbances in PD.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357381. https://doi.org/10.1146/annurev.ne.09.030186.002041 CrossRefGoogle ScholarPubMed
Amick, M. M., Grace, J., & Ott, B. R. (2007). Visual and cognitive predictors of driving safety in Parkinson’s disease patients. Archives of Clinical Neuropsychology, 22(8), 957967. https://doi.org/10.1016/j.acn.2007.07.004 CrossRefGoogle ScholarPubMed
Asperholm, M., Nagar, S., Dekhtyar, S., & Herlitz, A. (2019). The magnitude of sex differences in verbal episodic memory increases with social progress: Data from 54 countries across 40 years. PLoS One, 14(4), e0214945. https://doi.org/10.1371/journal.pone.0214945 CrossRefGoogle ScholarPubMed
Asperholm, M., van Leuven, L., & Herlitz, A. (2020). Sex differences in episodic memory variance. Frontiers in Psychology, 11, 613. https://doi.org/10.3389/fpsyg.2020.00613 CrossRefGoogle ScholarPubMed
Auclair-Ouellet, N., Hanganu, A., Mazerolle, E. L., Lang, S. T., Kibreab, M., Ramezani, M., Haffenden, A., Hammer, T., Cheetham, J., Kathol, I., Pike, G. B., Sarna, J., Martino, D., & Monchi, O. (2021). Action fluency identifies different sex, age, global cognition, executive function and brain activation profile in non-demented patients with Parkinson’s disease. Journal of Neurology, 268(3), 10361049. https://doi.org/10.1007/s00415-020-10245-3 CrossRefGoogle ScholarPubMed
Auning, E., Kjaervik, V. K., Selnes, P., Aarsland, D., Haram, A., Bjornerud, A., Hessen, E., Esnaashari, A., & Fladby, T. (2014). White matter integrity and cognition in Parkinson’s disease: A cross-sectional study. BMJ Open, 4(1), e003976. https://doi.org/10.1136/bmjopen-2013-003976 CrossRefGoogle ScholarPubMed
Bayram, E., Banks, S. J., Shan, G., Kaplan, N., & Caldwell, J. Z. K. (2020). Sex differences in cognitive changes in de novo Parkinson’s Disease. Journal of the International Neuropsychological Society, 26(2), 241249. https://doi.org/10.1017/S1355617719001085 CrossRefGoogle ScholarPubMed
Belger, A., Puce, A., Krystal, J. H., Gore, J. C., Goldman-Rakic, P., & McCarthy, G. (1998). Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI. Human Brain Mapping, 6(1), 1432.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Caballol, N., Marti, M. J., & Tolosa, E. (2007). Cognitive dysfunction and dementia in Parkinson disease. Movement Disorders, 22 Suppl 17, S358366. https://doi.org/10.1002/mds.21677 CrossRefGoogle ScholarPubMed
Cereda, E., Cilia, R., Klersy, C., Siri, C., Pozzi, B., Reali, E., Colombo, A., Zecchinelli, A. L., Mariani, C. B., Tesei, S., Canesi, M., Sacilotto, G., Meucci, N., Zini, M., Isaias, I. U., Barichella, M., Cassani, E., Goldwurm, S., & Pezzoli, G. (2016). Dementia in Parkinson’s disease: Is male gender a risk factor? Parkinsonism & Related Disorders, 26, 6772. https://doi.org/10.1016/j.parkreldis.2016.02.024 CrossRefGoogle ScholarPubMed
Chafee, M. V., & Goldman-Rakic, P. S. (2000). Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades. Journal of Neurophysiology, 83(3), 15501566. https://doi.org/10.1152/jn.2000.83.3.1550 CrossRefGoogle ScholarPubMed
Chapin, J. S., Busch, R. M., Naugle, R. I., & Najm, I. M. (2009). The Family Pictures subtest of the WMS-III: Relationship to verbal and visual memory following temporal lobectomy for intractable epilepsy. Journal of Clinical and Experimental Neuropsychology, 31(4), 498504. https://doi.org/10.1080/13803390802317575 CrossRefGoogle ScholarPubMed
Chen, M. L., Tan, C. H., Su, H. C., Sung, P. S., Chien, C. Y., & Yu, R. L. (2021). The impact of sex on the neurocognitive functions of patients with Parkinson’s disease. Brain Sciences, 11(10), 1331. https://doi.org/10.3390/brainsci11101331 CrossRefGoogle ScholarPubMed
Cholerton, B., Johnson, C. O., Fish, B., Quinn, J. F., Chung, K. A., Peterson-Hiller, A. L., Rosenthal, L. S., Dawson, T. M., Albert, M. S., Hu, S-C., Mata, I. F., Leverenz, J. B., Poston, K. L., Montine, T. J., Zabetian, C. P., & Edwards, K. L. (2018). Sex differences in progression to mild cognitive impairment and dementia in Parkinson’s disease. Parkinsonism Relat Disord, 50, 2936, https://doi.org/10.1016/j.parkreldis.2018.02.007,CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). United States of America Lawrence Erlbaum Associates.Google Scholar
Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873880. https://doi.org/10.1001/archneur.1993.00540080076020 CrossRefGoogle ScholarPubMed
Curtis, A. F., Masellis, M., Camicioli, R., Davidson, H., & Tierney, M. C. (2019). Cognitive profile of non-demented Parkinson’s disease: Meta-analysis of domain and sex-specific deficits. Parkinsonism & Related Disorders, 60, 3242. https://doi.org/10.1016/j.parkreldis.2018.10.014 CrossRefGoogle ScholarPubMed
Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1987). California Verbal Learning Test: Adult version. San Antonio, TX: Manual Psychological Corporation.Google Scholar
Disbrow, E. A., Carmichael, O., He, J., Lanni, K. E., Dressler, E. M., Zhang, L., Malhado-Chang, N., & Sigvardt, K. A. (2014). Resting state functional connectivity is associated with cognitive dysfunction in non-demented people with Parkinson’s disease. Journal of Parkinson’s Disease, 4(3), 453465. https://doi.org/10.3233/JPD-130341 CrossRefGoogle ScholarPubMed
Dixon, R. A., Wahlin, A., Maitland, S. B., Hultsch, D. F., Hertzog, C., & Backman, L. (2004). Episodic memory change in late adulthood: Generalizability across samples and performance indices. Memory & Cognition, 32(5), 768778. https://doi.org/10.3758/bf03195867 CrossRefGoogle ScholarPubMed
Dorsey, E. R., Sherer, T., Okun, M. S., & Bloem, B. R. (2018). The emerging evidence of the Parkinson pandemic. Journal of Parkinson’s Disease, 8(s1), S3S8. https://doi.org/10.3233/JPD-181474 CrossRefGoogle ScholarPubMed
Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244(1), 28. https://doi.org/10.1007/pl00007725 CrossRefGoogle ScholarPubMed
Dulay, M. F., Schefft, B. K., Testa, S. M., Fargo, J. D., Privitera, M., & Yeh, H. S. (2002). What does the family pictures subtest of the Wechsler Memory Scale-III measure? Insight gained from patients evaluated for epilepsy surgery. Clinical Neuropsychologist, 16(4), 452462. https://doi.org/10.1076/clin.16.4.452.13915 CrossRefGoogle ScholarPubMed
Elbaz, A., Carcaillon, L., Kab, S., & Moisan, F. (2016). Epidemiology of Parkinson’s disease. Revue Neurologique (Paris), 172(1), 1426. https://doi.org/10.1016/j.neurol.2015.09.012 CrossRefGoogle ScholarPubMed
Emre, M. (2003). Dementia associated with Parkinson’s disease. Lancet Neurology, 2(4), 229237. https://www.ncbi.nlm.nih.gov/pubmed/12849211 CrossRefGoogle ScholarPubMed
Fahn, S., & Elton, R. (1987). UPDRS program members. Unified Parkinsons disease rating scale. Recent Developments in Parkinson’s Disease, 2, 153163.Google Scholar
Fletcher, P. C., & Henson, R. N. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124(Pt 5), 849881. https://doi.org/10.1093/brain/124.5.849 CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198. https://www.ncbi.nlm.nih.gov/pubmed/1202204 CrossRefGoogle ScholarPubMed
Foster, G. C., Lane, D., Scott, D., Hebl, M., Guerra, R., Osherson, D., & Zimmer, H. (2018). An introduction to psychological statistics. University of Missouri - St Louis.Google Scholar
Fuentes, A., & Desrocher, M. (2013). The effects of gender on the retrieval of episodic and semantic components of autobiographical memory. Memory, 21(6), 619632. https://doi.org/10.1080/09658211.2012.744423 CrossRefGoogle ScholarPubMed
Haaxma, C. A., Bloem, B. R., Borm, G. F., Oyen, W. J. G., Leenders, K. L., Eshuis, S., Booij, J., Dluzen, D. E., Horstink, M. W. (2007). Gender differences in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 78(8), 819824. https://doi.org/10.1136/jnnp.2006.103788 CrossRefGoogle ScholarPubMed
Hansch, E. C., Syndulko, K., Cohen, S. N., Goldberg, Z. I., Potvin, A. R., & Tourtellotte, W. W. (1982). Cognition in Parkinson disease: An event-related potential perspective. Annals of Neurology, 11(6), 599607. https://doi.org/10.1002/ana.410110608 CrossRefGoogle ScholarPubMed
Herlitz, A., & Rehnman, J. (2008). Sex differences in episodic memory. Current Directions in Psychological Science, 17(1), 5256.CrossRefGoogle Scholar
Herlitz, A., & Yonker, J. E. (2002). Sex differences in episodic memory: The influence of intelligence. Journal of Clinical and Experimental Neuropsychology, 24(1), 107114. https://doi.org/10.1076/jcen.24.1.107.970 CrossRefGoogle ScholarPubMed
Higginson, C. I., King, D. S., Levine, D., Wheelock, V. L., Khamphay, N. O., & Sigvardt, K. A. (2003). The relationship between executive function and verbal memory in Parkinson’s disease. Brain and Cognition, 52(3), 343352. https://doi.org/10.1016/S0278-2626(03)00180-5 CrossRefGoogle ScholarPubMed
Higginson, C. I., Wheelock, V. L., Carroll, K. E., & Sigvardt, K. A. (2005). Recognition memory in Parkinson’s disease with and without dementia: Evidence inconsistent with the retrieval deficit hypothesis. Journal of Clinical and Experimental Neuropsychology, 27(4), 516528. https://doi.org/10.1080/13803390490515469 CrossRefGoogle ScholarPubMed
Klebe, S., Golmard, J-L., Nalls, M. A., Saad, M., Singleton, A. B., Bras, J. M., Hardy, J., Simon-Sanchez, J., Heutink, P., Kuhlenbaumer, G., Charfi, R., Klein, C., Hagenah, J., Gasser, T., Wurster, I., Lesage, S., Lorenz, D., Deuschl, G., Durif, F., …Singleton, A. B. (2013). The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson’s disease with a sexual dimorphism. Journal of Neurology, Neurosurgery & Psychiatry, 84(6), 666673. https://doi.org/10.1136/jnnp-2012-304475 CrossRefGoogle ScholarPubMed
Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive functions in Parkinson’s disease: Systematic review and meta-analysis. Movement Disorders, 26(13), 23052315. https://doi.org/10.1002/mds.23868 CrossRefGoogle ScholarPubMed
Lanni, K. E., Ross, J. M., Higginson, C. I., Dressler, E. M., Sigvardt, K. A., Zhang, L., Malhado-Chang, N., & Disbrow, E. A. (2014). Perceived and performance-based executive dysfunction in Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 36(4), 342355. https://doi.org/10.1080/13803395.2014.892059 CrossRefGoogle ScholarPubMed
Linortner, P., McDaniel, C., Shahid, M., Levine, T. F., Tian, L., Cholerton, B., & Poston, K. L. (2020). White matter hyperintensities related to Parkinson’s disease executive function. Movement Disorders Clinical Practice, 7(6), 629638. https://doi.org/10.1002/mdc3.12956 CrossRefGoogle ScholarPubMed
Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., Mollenhauer, B., Adler, C. H., Marder, K., Williams-Gray, C. H., Aarsland, D., Kulisevsky, J., Rodriguez-Oroz, M. C., Burn, D. J., Barker, R. A., & Emre, M. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Movement Disorders, 27(3), 349356. https://doi.org/10.1002/mds.24893 CrossRefGoogle ScholarPubMed
Litvan, I., Mohr, E., Williams, J., Gomez, C., & Chase, T. N. (1991). Differential memory and executive functions in demented patients with Parkinson’s and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 54(1), 2529. https://doi.org/10.1136/jnnp.54.1.25 CrossRefGoogle ScholarPubMed
Liu, R., Umbach, D. M., Peddada, S. D., Xu, Z., Troster, A. I., Huang, X., & Chen, H. (2015). Potential sex differences in nonmotor symptoms in early drug-naive Parkinson disease. Neurology, 84(21), 21072115. https://doi.org/10.1212/WNL.0000000000001609 CrossRefGoogle ScholarPubMed
Locascio, J. J., Corkin, S., & Growdon, J. H. (2003). Relation between clinical characteristics of Parkinson’s disease and cognitive decline. Journal of Clinical and Experimental Neuropsychology, 25(1), 94109. https://doi.org/10.1076/jcen.25.1.94.13624 CrossRefGoogle ScholarPubMed
Lubomski, M., Rushworth, R. L., Lee, W., Bertram, K., & Williams, D. R. (2013). A cross-sectional study of clinical management, and provision of health services and their utilisation, by patients with Parkinson’s disease in urban and regional Victoria. Journal of Clinical Neuroscience, 20(1), 102106. https://doi.org/10.1016/j.jocn.2012.05.015 CrossRefGoogle Scholar
Lundervold, A. J., Wollschlager, D., & Wehling, E. (2014). Age and sex related changes in episodic memory function in middle aged and older adults. Scandinavian Journal of Psychology, 55(3), 225232. https://doi.org/10.1111/sjop.12114 CrossRefGoogle ScholarPubMed
Mattay, V. S., Tessitore, A., Callicott, J. H., Bertolino, A., Goldberg, T. E., Chase, T. N., Hyde, T. M., & Weinberger, D. R. (2002). Dopaminergic modulation of cortical function in patients with Parkinson’s disease. Annals of Neurology, 51(2), 156164. https://doi.org/10.1002/ana.10078 CrossRefGoogle ScholarPubMed
McCarthy, G., Puce, A., Constable, R. T., Krystal, J. H., Gore, J. C., & Goldman-Rakic, P. (1996). Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI. Cerebral Cortex, 6(4), 600611. https://doi.org/10.1093/cercor/6.4.600 CrossRefGoogle ScholarPubMed
Mehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic dysbalance in distinct basal ganglia neurocircuits: Implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotoxicity Research, 10(3-4), 167179. https://doi.org/10.1007/BF03033354 CrossRefGoogle ScholarPubMed
Melzer, T. R., Watts, R., MacAskill, M. R., Pitcher, T. L., Livingston, L., Keenan, R. J., Dalrymple-Alford, J. C., & Anderson, T. J. (2013). White matter microstructure deteriorates across cognitive stages in Parkinson disease. Neurology, 80(20), 18411849. https://doi.org/10.1212/WNL.0b013e3182929f62 CrossRefGoogle ScholarPubMed
Muslimovic, D., Post, B., Speelman, J. D., & Schmand, B. (2005). Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology, 65(8), 12391245. https://doi.org/10.1212/01.wnl.0000180516.69442.95 CrossRefGoogle ScholarPubMed
Nguyen, H., Hall, B., Higginson, C. I., Sigvardt, K. A., Zweig, R., & Disbrow, E. A. (2017). Theory of cognitive aging in Parkinson disease. Journal of Alzheimer’s Disease & Parkinsonism, 7(5), 369. https://doi.org/10.4172/2161-0460.1000369 CrossRefGoogle Scholar
Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 5383. https://doi.org/10.1016/s0301-0082(02)00011-4 CrossRefGoogle ScholarPubMed
Owen, A. M. (1997). The functional organization of working memory processes within human lateral frontal cortex: The contribution of functional neuroimaging. European Journal of Neuroscience, 9(7), 13291339. https://doi.org/10.1111/j.1460-9568.1997.tb01487.x CrossRefGoogle ScholarPubMed
Owen, A. M., Beksinska, M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P., Sahakian, B. J., & Robbins, T. W. (1993). Visuospatial memory deficits at different stages of Parkinson’s disease. Neuropsychologia, 31(7), 627644. https://doi.org/10.1016/0028-3932(93)90135-m CrossRefGoogle ScholarPubMed
Paek, E. J., Murray, L. L., & Newman, S. D. (2020). Neural correlates of verb fluency performance in cognitively healthy older adults and individuals with dementia: A pilot fMRI study. Frontiers in Aging Neuroscience, 12, 73. https://doi.org/10.3389/fnagi.2020.00073 CrossRefGoogle ScholarPubMed
Pal, G., O'Keefe, J., Robertson-Dick, E., Bernard, B., Anderson, S., & Hall, D. (2016). Global cognitive function and processing speed are associated with gait and balance dysfunction in Parkinson’s disease. Journal of Neuroengineering and Rehabilitation, 13(1), 94. https://doi.org/10.1186/s12984-016-0205-y CrossRefGoogle ScholarPubMed
Picillo, M., Nicoletti, A., Fetoni, V., Garavaglia, B., Barone, P., & Pellecchia, M. T. (2017). The relevance of gender in Parkinson’s disease: A review. Journal of Neurology, 264(8), 15831607. https://doi.org/10.1007/s00415-016-8384-9 CrossRefGoogle ScholarPubMed
Pigott, K., Rick, J., Xie, S. X., Hurtig, H., Chen-Plotkin, A., Duda, J. E., Morley, J. F., Chahine, L. M., Dahodwala, N., Akhtar, R. S., Siderowf, A., Trojanowski, J. Q., & Weintraub, D. (2015). Longitudinal study of normal cognition in Parkinson disease. Neurology, 85(15), 12761282. https://doi.org/10.1212/WNL.0000000000002001 CrossRefGoogle ScholarPubMed
Reekes, T. H., Higginson, C. I., Ledbetter, C. R., Sathivadivel, N., Zweig, R. M., & Disbrow, E. A. (2020). Sex specific cognitive differences in Parkinson disease. NPJ Parkinson’s Disease, 6(1), 7. https://doi.org/10.1038/s41531-020-0109-1 CrossRefGoogle ScholarPubMed
Reifegerste, J., Estabrooke, I. V., Russell, L. E., Veríssimo, J., Johari, K., Wilmarth, B., Pagan, F. L., Moussa, C., & Ullman, M. T. (2020). Can sex influence the neurocognition of language? Evidence from Parkinson’s disease. Neuropsychologia, 148, 107633. https://doi.org/10.1016/j.neuropsychologia.2020.107633 CrossRefGoogle ScholarPubMed
Rektor, I., Bohnen, N. I., Korczyn, A. D., Gryb, V., Kumar, H., Kramberger, M. G., de Leeuw, F-E., Pirtošek, Z., Rektorová, I., Schlesinger, I., Slawek, J., Valkovič, P., & Veselý, B. (2018). An updated diagnostic approach to subtype definition of vascular parkinsonism - Recommendations from an expert working group. Parkinsonism & Related Disorders, 49, 916. https://doi.org/10.1016/j.parkreldis.2017.12.030 CrossRefGoogle ScholarPubMed
Ridker, P. M., Danielson, E., Fonseca, F. A. H., Genest, J., Gotto, A. M. Jr., Kastelein, J. J. P., Koenig, W., Libby, P., Lorenzatti, A. J., MacFadyen, J. G., Nordestgaard, B. G., Shepherd, J., Willerson, J. T., & Glynn, R. J. (2008). Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine, 359(21), 21952207. https://doi.org/10.1056/NEJMoa0807646 CrossRefGoogle ScholarPubMed
Riedel, O., Klotsche, J., Spottke, A., Deuschl, G., Förstl, H., Henn, F., Heuser, I., Oertel, W., Reichmann, H., Riederer, P., Trenkwalder, C., Dodel, R., & Wittchen, H-U. (2008). Cognitive impairment in 873 patients with idiopathic Parkinson’s disease. Results from the German Study on Epidemiology of Parkinson’s Disease with Dementia (GEPAD). Journal of Neurology, 255(2), 255264. https://doi.org/10.1007/s00415-008-0720-2 CrossRefGoogle Scholar
Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychological Review, 103(3), 403428. https://www.ncbi.nlm.nih.gov/pubmed/8759042 CrossRefGoogle ScholarPubMed
Scott, B., Borgman, A., Engler, H., Johnels, B., & Aquilonius, S. M. (2000). Gender differences in Parkinson’s disease symptom profile. Acta Neurologica Scandinavica, 102(1), 3743. https://doi.org/10.1034/j.1600-0404.2000.102001037.x CrossRefGoogle ScholarPubMed
Shook, S. K., Franz, E. A., Higginson, C. I., Wheelock, V. L., & Sigvardt, K. A. (2005). Dopamine dependency of cognitive switching and response repetition effects in Parkinson’s patients. Neuropsychologia, 43(14), 19901999. https://doi.org/10.1016/j.neuropsychologia.2005.03.024 CrossRefGoogle ScholarPubMed
Solla, P., Cannas, A., Ibba, F. C., Loi, F., Corona, M., Orofino, G., Marrosu, M. G., & Marrosu, F. (2012). Gender differences in motor and non-motor symptoms among Sardinian patients with Parkinson’s disease. Journal of the Neurological Sciences, 323(1-2), 3339. https://doi.org/10.1016/j.jns.2012.07.026 CrossRefGoogle ScholarPubMed
Sundararaman, B., Zhan, L., Blue, S M., Stanton, R., Elkins, K., Olson, S., Wei, X., Van Nostrand, E L., Pratt, G A., Huelga, S C., Smalec, B M., Wang, X., Hong, E L., Davidson, J M., Lécuyer, E., Graveley, B R., & Yeo, G W. (2016). Resources for the comprehensive discovery of functional RNA elements. Molecular Cell, 61(6), 903913, https://doi.org/10.1016/j.molcel.2016.02.012,CrossRefGoogle ScholarPubMed
Szewczyk-Krolikowski, K., Tomlinson, P., Nithi, K., Wade-Martins, R., Talbot, K., Ben-Shlomo, Y., & Hu, M. T. (2014). The influence of age and gender on motor and non-motor features of early Parkinson’s disease: Initial findings from the Oxford Parkinson Disease Center (OPDC) discovery cohort. Parkinsonism & Related Disorders, 20(1), 99105. https://doi.org/10.1016/j.parkreldis.2013.09.025 CrossRefGoogle ScholarPubMed
Taylor, A. E., Saint-Cyr, J. A., & Lang, A. E. (1986). Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain, 109(5), 845883. https://doi.org/10.1093/brain/109.5.845 CrossRefGoogle ScholarPubMed
Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. (2008). Cognitive processing speed and the structure of white matter pathways: Convergent evidence from normal variation and lesion studies. Neuroimage, 42(2), 10321044. https://doi.org/10.1016/j.neuroimage.2008.03.057 CrossRefGoogle ScholarPubMed
Twelves, D., Perkins, K. S., & Counsell, C. (2003). Systematic review of incidence studies of Parkinson’s disease. Movement Disorders, 18(1), 1931. https://doi.org/10.1002/mds.10305 CrossRefGoogle ScholarPubMed
Umeh, C. C., Pérez, A., Augustine, E. F., Dhall, R., Dewey, R. B. Jr., Mari, Z., Simon, D. K., Wills, A-M. A., Christine, C. W., Schneider, J. S., Suchowersky, O., & Kassubek, J. (2014). No sex differences in use of dopaminergic medication in early Parkinson disease in the US and Canada - baseline findings of a multicenter trial. PLoS One, 9(12), e112287. https://doi.org/10.1371/journal.pone.0112287 CrossRefGoogle ScholarPubMed
Vriend, C., van Balkom, T. D., van Druningen, C., Klein, M., van der Werf, Y. D., Berendse, H. W., & van den Heuvel, O. A. (2020). Processing speed is related to striatal dopamine transporter availability in Parkinson’s disease. NeuroImage: Clinical, 26, 102257. https://doi.org/10.1016/j.nicl.2020.102257 CrossRefGoogle ScholarPubMed
Wechsler, D. (1997a). WAIS-III administration and scoring manual. The Psychological Corporation.Google Scholar
Wechsler, D. (1997b). WMS-III administration and scoring manual. The Psychological Corporation. Harcourt Brace & Co.Google Scholar
Whittington, C. J., Podd, J., & Kan, M. M. (2000). Recognition memory impairment in Parkinson’s disease: Power and meta-analyses. Neuropsychology, 14(2), 233246. https://doi.org/10.1037//0894-4105.14.2.233 CrossRefGoogle ScholarPubMed
Yang, K., Shen, B., Li, D.-K., Wang, Y., Zhao, J., Zhao, J., Yu, W.-B., Liu, Z.-Y., Tang, Y.-L., Liu, F.-T., Yu, H., Wang, J., Guo, Q.-H., & Wu, J.-J. (2018). Cognitive characteristics in Chinese non-demented PD patients based on gender difference. Translational Neurodegeneration, 7(1), 16. https://doi.org/10.1186/s40035-018-0120-1 CrossRefGoogle ScholarPubMed
Zweig, R. M., Disbrow, E. A., & Javalkar, V. (2016). Cognitive and psychiatric disturbances in Parkinsonian syndromes. Neurologic Clinics, 34(1), 235246. https://doi.org/10.1016/j.ncl.2015.08.010 CrossRefGoogle ScholarPubMed