Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:01:01.128Z Has data issue: false hasContentIssue false

Upper and Lower Extremity Motor Function and Cognitive Impairment in Multiple Sclerosis

Published online by Cambridge University Press:  13 April 2011

Ralph H.B. Benedict*
Affiliation:
SUNY Buffalo School of Medicine, Department of Neurology, and the Jacobs Neurological Institute, Buffalo, New York
Roee Holtzer
Affiliation:
Ferkauf Graduate School of Psychology and Department of Neurology, at the Albert Einstein College of Medicine, Yeshiva University, New York, New York
Robert W. Motl
Affiliation:
Department of Kinesiology, University of Illinois Urbana-Champaign, Illinois
Frederick W. Foley
Affiliation:
Ferkauf Graduate School of Psychology and Department of Neurology, at the Albert Einstein College of Medicine, Yeshiva University, New York, New York
Sukhmit Kaur
Affiliation:
SUNY Buffalo School of Medicine, Department of Neurology, and the Jacobs Neurological Institute, Buffalo, New York
David Hojnacki
Affiliation:
SUNY Buffalo School of Medicine, Department of Neurology, and the Jacobs Neurological Institute, Buffalo, New York
Bianca Weinstock-Guttman
Affiliation:
SUNY Buffalo School of Medicine, Department of Neurology, and the Jacobs Neurological Institute, Buffalo, New York
*
Correspondence and reprint requests to: Ralph H.B. Benedict, Neurology, D-6, Buffalo General Hospital, 100 High Street, Buffalo, New York 14203. E-mail: benedict@buffalo.edu

Abstract

Motor impairments and cognitive dysfunction are common in multiple sclerosis (MS). We aimed to delineate the relationship between cognitive capacity and upper and lower motor function in 211 MS patients, and 120 healthy volunteers. Lower and upper motor function were assessed with the Timed 25 Foot Walk (T25FW) and the Nine Hole Peg Test (NHPT) as implemented in the Multiple Sclerosis Functional Composite (MSFC). Subjects also underwent neuropsychological evaluation. Hierarchical linear regression analysis was conducted separately for the MS and healthy groups with the T25FW and NHPT serving as the outcome measures. Cognitive performance indices served as predictors. As expected, healthy subjects performed better than the MS group on all measures. Processing speed and executive function tests were significant predictors of lower and upper motor function in both groups. Correlations were more robust in the MS group, where cognitive tests predicted variability in motor function after controlling for disease duration and physical disability. In conclusion, we find evidence of higher order cognitive control of motor function that appears to be particularly salient in this large and representative MS sample. The findings may have implications for risk assessment and treatment of mobility dysfunction in MS. (JINS, 2011, 17, 643–653)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allali, G., Assal, F., Kressig, R.W., Dubost, V., Herrmann, F.R., Beauchet, O. (2008). Impact of impaired executive function on gait stability. Dementia and Geriatric Cognitive Disorders, 26(4), 364369.CrossRefGoogle ScholarPubMed
APA. American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders, fourth edition, text revision. Washington, DC: American Psychiatric Association.Google Scholar
Beatty, W.W., Monson, N. (1996). Problem solving by patients with multiple sclerosis: Comparison of performance on the Wisconsin and California Card Sorting Test. Journal of the International Neuropsychological Society, 2, 134140.CrossRefGoogle Scholar
Beck, A.T., Steer, R.A., Brown, G.K. (2000). BDI-fast screen for medical patients: Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Benedict, R.H., Cookfair, D., Gavett, R., Gunther, M., Munschauer, F., Garg, N., Weinstock-Guttman, B. (2006). Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 12(4), 549558.Google ScholarPubMed
Benedict, R.H., Ramasamy, D., Munschauer, F., Weinstock-Guttman, B., Zivadinov, R. (2009). Memory impairment in multiple sclerosis: Correlation with deep grey matter and mesial temporal atrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 80(2), 201206.Google ScholarPubMed
Benedict, R.H., Wahlig, E., Bakshi, R., Fishman, I., Munschauer, F., Zivadinov, R., Weinstock-Guttman, B. (2005). Predicting quality of life in multiple sclerosis: Accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change. Journal of the Neurological Sciences, 231(1–2), 2934.CrossRefGoogle ScholarPubMed
Benedict, R.H.B. (1997). Brief visuospatial memory test - Revised: Professional manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Benedict, R.H.B. (2005). Effects of using same vs. alternate form memory tests in short-interval, repeated assessment in multiple sclerosis. Journal of the International Neuropsychological Society, 11, 727736.CrossRefGoogle Scholar
Benedict, R.H.B., Fischer, J.S., Archibald, C.J., Arnett, P.A., Beatty, W.W., Bobholz, J., Munschauer, F. (2002). Minimal neuropsychological assessment of MS patients: A consensus approach. Clinical Neuropsychologist, 16, 381397.Google ScholarPubMed
Benedict, R.H.B., Fishman, I., McClellan, M.M., Bakshi, R., Weinstock-Guttman, B. (2003). Validity of the Beck Depression Inventory - Fast Screen in multiple sclerosis. Multiple Sclerosis, 9, 393396.CrossRefGoogle ScholarPubMed
Benedict, R.H.B., Hussein, S., Englert, J., Dwyer, M., Abdelrahman, N., Cox, J.L., Zivadinov, R. (2008). Cortical atrophy and personality in multiple sclerosis. Neuropsychology, 22, 432441.CrossRefGoogle ScholarPubMed
Benton, A.L., Sivan, A.B., Hamsher, K., Varney, N.R., Spreen, O. (1994). Contributions to Neuropsychological Assessment (2nd ed.). New York: Oxford University Press.Google Scholar
Ble, A., Volpato, S., Zuliani, G., Guralnik, J.M., Bandinelli, S., Lauretani, F., Ferrucci, L. (2005). Executive function correlates with walking speed in older persons: The InCHIANTI study. Journal of the American Geriatrics Society, 53(3), 410415.CrossRefGoogle ScholarPubMed
Cantin, J.F., McFadyen, B.J., Doyon, J., Swaine, B., Dumas, D., Vallee, M. (2007). Can measures of cognitive function predict locomotor behaviour in complex environments following a traumatic brain injury? Brain Injury, 21(3), 327334.CrossRefGoogle ScholarPubMed
Cohen, J., Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences, second edition. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Cohen, J.A., Cutter, G.R., Fischer, J.S., Goodman, A.D., Heidenreich, F.R., Jak, A.J., Whitaker, J.N. (2001). Use of the multiple sclerosis functional composite as an outcome measure in a phase 3 clinical trial. Archives of Neurology, 58(6), 961967.CrossRefGoogle Scholar
Colcombe, S., Kramer, A.F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2), 125130.CrossRefGoogle ScholarPubMed
Cutter, G.R., Baier, M.L., Rudick, R.A., Cookfair, D.L., Fischer, J.S., Petkau, J., Willoughby, E. (1999). Development of a multiple sclerosis funcitonal composite as a clinical trial outcome measure. Brain, 122, 871882.CrossRefGoogle Scholar
Delis, D.C., Kaplan, E., Kramer, J.H. (2001). Delis-Kaplan executive function system. San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. (2000). California verbal learning test manual: second edition, adult version. San Antonio, TX: Psychological Corporation.Google Scholar
Drake, A.S., Weinstock-Guttman, B., Morrow, S.A., Hojnacki, D., Munschauer, F., Benedict, R.H.B. (2010). Psychometrics and normative data for the multiple sclerosis functional composite: Replacing the PASAT with the Symbol Digit Modalities Test. Multiple Sclerosis, 16(2), 228237.CrossRefGoogle ScholarPubMed
Duquin, J.A., Parmenter, B.A., Benedict, R.H. (2008). Influence of recruitment and participation bias in neuropsychological research among MS patients. Journal of the International Neuropsychological Society, 14(3), 494498.CrossRefGoogle ScholarPubMed
Fischer, J.S., Rudick, R.A., Cutter, G.R., Reingold, S.C. (1999). The Multiple Sclerosis Functional Composite Measure (MSFC): An integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Multiple Sclerosis, 5, 244250.CrossRefGoogle Scholar
Gronwall, D.M.A. (1977). Paced auditory serial addition task: A measure of recovery from concussion. Perceptual and Motor Skills, 44, 367373.CrossRefGoogle ScholarPubMed
Guo, X., Steen, B., Matousek, M., Andreasson, L.A., Larsson, L., Palsson, S., Skoog, I. (2001). A population-based study on brain atrophy and motor performance in elderly women. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56(10), M633M637.CrossRefGoogle Scholar
Hausdorff, J.M. (2005). Gait variability: Methods, modeling and meaning. Journal of Neuroengineering and Rehabilitation, 2, 19.CrossRefGoogle ScholarPubMed
Hobart, J., Kalkers, N., Barkhof, F., Uitdehaag, B., Polman, C., Thompson, A. (2004). Outcome measures for multiple sclerosis clinical trials: Relative measurement precision of the Expanded Disability Status Scale and Multiple Sclerosis Functional Composite. [Research Support, Non-U.S. Gov't]. Multiple Sclerosis, 10(1), 4146.CrossRefGoogle ScholarPubMed
Holtzer, R., Friedman, R., Lipton, R.B., Katz, M., Xue, X., Verghese, J. (2007). The relationship between specific cognitive functions and falls in aging. Neuropsychology, 21(5), 540548.CrossRefGoogle ScholarPubMed
Holtzer, R., Ozelius, L., Xue, X., Wang, T., Lipton, R.B., Verghese, J. (2010). Differential effects of COMT on gait and executive control in aging. Neurobiology of Aging, 31(3), 523531.CrossRefGoogle ScholarPubMed
Holtzer, R., Verghese, J., Xue, X., Lipton, R.B. (2006). Cognitive processes related to gait velocity: Results from the Einstein Aging Study. Neuropsychology, 20(2), 215223.CrossRefGoogle ScholarPubMed
Houtchens, M.K., Benedict, R.H.B., Killiany, R., Sharma, J., Jaisani, Z., Singh, B., Bakshi, R. (2007). Thalamic atrophy and cognition in multiple sclerosis. Neurology, 69, 113123.CrossRefGoogle ScholarPubMed
Kurtzke, J.F. (1983). Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Annals of Neurology, 13, 227231.Google Scholar
Lublin, F.D., Reingold, S.C. (1996). Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis [see comment]. Neurology, 46(4), 907911.CrossRefGoogle ScholarPubMed
Mathiowetz, V., Weber, K., Kashman, N., Volland, G. (1985). Adult norms for the Nine Hole Peg Test of Finger Dexterity. Occupational Therapy Journal of Research, 5, 2438.CrossRefGoogle Scholar
Parmenter, B.A., Testa, S.M., Schretlen, D.J., Weinstock-Guttman, B., Benedict, R.H. (2010). The utility of regression-based norms in interpreting the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 16(1), 616.CrossRefGoogle ScholarPubMed
Parmenter, B.A., Zivadinov, R., Kerenyi, L., Gavett, R., Weinstock-Guttman, B., Dwyer, M., Benedict, R.H. (2007). Validity of the Wisconsin Card Sorting and Delis-Kaplan Executive Function System (DKEFS) Sorting Tests in Multiple Sclerosis. Journal of Clinical & Experimental Neuropsychology, 29, 215223.CrossRefGoogle ScholarPubMed
Polman, C.H., Reingold, S.C., Edan, G., Filippi, M., Hartung, H.P., Kappos, L., Wolinsky, J.S. (2005). Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. [Review]. Annals of Neurology, 58(6), 840846.CrossRefGoogle Scholar
Prakash, R.S., Snook, E.M., Erickson, K.I., Colcombe, S.J., Voss, M.W., Motl, R.W., Kramer, A.F. (2007). Cardiorespiratory fitness: A predictor of cortical plasticity in multiple sclerosis. Neuroimage, 34(3), 12381244.CrossRefGoogle ScholarPubMed
Rao, S. (1991). A Manual for the Brief Repeatable Battery of Neuropsychological Tests in Multiple Sclerosis. National MS Society, NY, New York.Google Scholar
Rao, S.M., Leo, G.J., Bernardin, L., Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41, 685691.CrossRefGoogle ScholarPubMed
Rao, S.M., Leo, G.J., Ellington, L., Nauertz, T., Bernardin, L., Unveragt, F. (1991). Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology, 41, 692696.CrossRefGoogle ScholarPubMed
Rosano, C., Aizenstein, H.J., Studenski, S., Newman, A.B. (2007). A regions-of-interest volumetric analysis of mobility limitations in community-dwelling older adults. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62(9), 10481055.CrossRefGoogle ScholarPubMed
Rosano, C., Brach, J., Studenski, S., Longstreth, W.T. Jr., Newman, A.B. (2007). Gait variability is associated with subclinical brain vascular abnormalities in high-functioning older adults. Neuroepidemiology, 29(3–4), 193200.CrossRefGoogle ScholarPubMed
Rudick, R.A., Cutter, G., Baier, M., Fisher, E., Dougherty, D., Weinstock-Guttman, B., Simonian, N.A. (2001). Use of the multiple sclerosis functional composite to predict disability in relapsing MS. Neurology, 56, 13241330.CrossRefGoogle ScholarPubMed
Smith, A. (1982). Symbol digit modalities test: Manual. Los Angeles: Western Psychological Services.Google Scholar
Snijders, A.H., van de Warrenburg, B.P., Giladi, N., Bloem, B.R. (2007). Neurological gait disorders in elderly people: Clinical approach and classification. Lancet Neurology, 6(1), 6374.CrossRefGoogle ScholarPubMed
Snook, E.M., Motl, R.W. (2009). Effect of exercise training on walking mobility in multiple sclerosis: A meta-analysis. Neurorehabilitation and Neural Repair, 23(2), 108116.CrossRefGoogle ScholarPubMed
Strober, L., Englert, J., Munschauer, F., Weinstock-Guttman, B., Rao, S., Benedict, R.H. (2009). Sensitivity of conventional memory tests in multiple sclerosis: Comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Multiple Sclerosis, 15(9), 10771084.CrossRefGoogle ScholarPubMed
Tekok-Kilic, A., Benedict, R.H.B., Weinstock-Guttman, B., Dwyer, M., Carone, D., Srinivasaraghavan, B., Zivadinov, R. (2007). Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis. Neuroimage, 36, 12941300.CrossRefGoogle ScholarPubMed
Verghese, J., Wang, C., Lipton, R.B., Holtzer, R., Xue, X. (2007). Quantitative gait dysfunction and risk of cognitive decline and dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 78(9), 929935.CrossRefGoogle ScholarPubMed
Whitman, G.T., Tang, Y., Lin, A., Baloh, R.W. (2001). A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology, 57(6), 990994.CrossRefGoogle ScholarPubMed
Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S., Hausdorff, J.M. (2005). Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding? European Journal of Neuroscience, 22(5), 12481256.CrossRefGoogle ScholarPubMed
Yogev-Seligmann, G., Hausdorff, J.M., Giladi, N. (2008). The role of executive function and attention in gait. Movement Disorders, 23(3), 329342; quiz 472.CrossRefGoogle ScholarPubMed