Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:17:01.375Z Has data issue: false hasContentIssue false

The Utility of Parent Report in the Assessment of Working Memory among Childhood Brain Tumor Survivors

Published online by Cambridge University Press:  28 January 2013

Robyn A. Howarth
Affiliation:
Department of Neuropsychology, Children's Healthcare of Atlanta, Atlanta, Georgia
Jason M. Ashford
Affiliation:
Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
Thomas E. Merchant
Affiliation:
Division of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
Robert J. Ogg
Affiliation:
Division of Translational Imaging Research, St. Jude Children's Research Hospital, Memphis, Tennessee
Victor Santana
Affiliation:
Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
Shengjie Wu
Affiliation:
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
Xiaoping Xiong
Affiliation:
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
Heather M. Conklin*
Affiliation:
Department of Psychology, St. Jude Children's Research Hospital, Memphis, Tennessee
*
Correspondence and reprint requests to: Heather M. Conklin, Department of Psychology, Mail Stop #740, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105. E-mail: heather.conklin@stjude.org

Abstract

Childhood brain tumor survivors are at increased risk for neurocognitive impairments, including working memory (WM) problems. WM is typically assessed using performance measures. Little is known about the value of parent ratings for identifying WM difficulties, the relationship between rater and performance measures, or predictors of parent-reported WM problems in this population. Accordingly, the current study examined the utility of parent report in detecting WM difficulties among childhood brain tumor survivors treated with conformal radiation therapy (n = 50) relative to siblings (n = 40) and solid tumor survivors not receiving central nervous system-directed therapy (n = 40). Parents completed the Behavior Rating Inventory of Executive Function (BRIEF). Participants were administered WM measures (digit span, self-ordered search tasks). Findings revealed parents rated brain tumor survivors as having significantly more WM problems (p < .01) compared to controls. However, the BRIEF-WM scale demonstrated poor sensitivity and specificity for detecting performance-based problems. Significant, albeit modest, correlations were found between the BRIEF-WM scale and performance measures (r = −.24–.22; p < .05) for the combined group. Age at testing, socioeconomic status, and IQ were significant predictors of parent reported WM problems. Rater and performance measures offer complimentary yet different information in assessing WM, which reiterates the importance of using both within the context of clinical assessment. (JINS, 2013, 19, 1–10)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T.M. (1991). Manual for the Child Behavior Checklist/4-18 and 1991 Profile. Burlington, VT: University of Vermont, Department of Psychiatry.Google Scholar
Anderson, V.A., Anderson, P., Northam, E., Jacobs, R., Mikiewicz, O. (2002). Relationships between cognitive and behavioral measures of executive function in children with brain disease. Child Neuropsychology, 8(4), 231240. doi:10.1076/chin.8.4.231.13509CrossRefGoogle ScholarPubMed
Baddeley, A. (1986). Working memory. Oxford, England: Oxford University Press. doi:10.1016/S0764-4469(97)89817-4Google ScholarPubMed
Barratt, W.R. (2006). The Barratt Simplified Measure of Social Status. Retrieved from http://wbarratt.indstate.edu/socialclass/Barratt_Simplified_Measure_of_Social_Status.pdfGoogle Scholar
Boykoff, N., Moieni, M., Subramanian, S.K. (2009). Confronting chemobrain: An in-depth look at survivors’ reports of impact on work, social networks, and health care response. Journal of Cancer Survivors, 3(4), 223232. doi:10.1007/s11764-009-0098-xCrossRefGoogle Scholar
Conklin, H.C., Ashford, J.A., Howarth, R.A., Merchant, T.E., Ogg, R.J., Santana, V., Xiong, X. (2012). Working memory performance among childhood brain tumor survivors. Journal of the International Neuropsychological Society, 18, 9961005. doi:10.1017/S1355617712000793CrossRefGoogle ScholarPubMed
Conklin, H.M., Li, C., Xiong, X., Ogg, R.J., Merchant, T.E. (2008). Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. Journal of Clinical Oncology, 26(24), 39653970. doi:10.1200/JCO.2007.15.9970CrossRefGoogle ScholarPubMed
Conklin, H.M., Luciana, M., Hooper, C.J., Yarger, R.S. (2007). Working memory performance in typically developing children and adolescents: Behavioral evidence of protracted frontal lobe development. Developmental Neuropsychology, 31, 103128. doi:10.1207/s15326942dn3101_6CrossRefGoogle ScholarPubMed
Conklin, H.M., Salorio, C.F., Slomine, B.S. (2008). Working memory performance following pediatric traumatic brain injury. Brain Injury, 22(11), 847857. doi:10.1080/02699050802403565CrossRefGoogle Scholar
Conners, C.K. (1989). Conners’ Rating Scales Manual. North Tonawanda, NY: Multi-Health Systems.Google Scholar
Curtis, C.E., Zald, D.H., Pardo, J.V. (2000). Organization of working memory within the human prefrontal cortex: A PET study of self-ordered object working memory. Neuropsychologia, 38, 15031510. doi:10.1016/S0028-3932(00)00062-2CrossRefGoogle ScholarPubMed
D'Esposito, M. (2007). From cognitive to neural models of working memory. Philosophic Transactions of Royal Society B, 362, 761772. doi:10.1098/rstb.2007.2086CrossRefGoogle ScholarPubMed
Dennis, M. (1989). Language and the young damaged brain. In T.B. Boll (Ed.), Clinical neuropsychology and brain function: Research, measurement and practice. Washington, DC: American Psychological Association.Google Scholar
Dennis, M., Spiegler, B.J., Obonsawin, M.C., Maria, B.L., Cowell, C., Hoffman, H.J. (1992). Brain tumors in children and adolescents- III. Effects of radiation and hormone status on intelligence and on working, associative and serial order memory. Neuropsychology, 30, 257275. doi:10.1016/0028-3932(92)90004-6CrossRefGoogle ScholarPubMed
Ellenberg, L., McComb, J.G., Seigel, S.E., Stowe, S. (1987). Factors affecting intellectual outcome in pediatric brain tumor patients. Neurosurgery, 21, 638644. doi:10.1097/00006123-198711000-00006CrossRefGoogle ScholarPubMed
Giedd, J.N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 105109. doi:10.1196/annals.1308.009CrossRefGoogle ScholarPubMed
Gioia, G.A., Isquith, P.K., Guy, S.C., Kenworthy, L. (2000). Behavior rating inventory of executive function. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Giza, C.C., Prins, M.L. (2006). Is being plastic fantastic? Mechanisms of altered plasticity after developmental traumatic brain injury. Developmental Neuroscience, 28, 364379. doi:10.1159/000094163CrossRefGoogle ScholarPubMed
Hanten, G., Levin, H.S., Song, J.X. (1999). Working memory and metacognition in sentence comprehension by severely head injured children: A preliminary study with implications for rehabilitation. Developmental Neuropsychology, 16, 393414. doi:10.1207/S15326942DN1603_23CrossRefGoogle Scholar
Hede, K. (2008). Chemobrain is real but may need new name. Journal National Cancer Institute, 100(3), 162163, 169. doi:10.1093/jnci/djn007CrossRefGoogle ScholarPubMed
Hermelink, K., Kuchenhoff, H., Untch, M., Bauerfeind, M., Lux, M.P., Buhner, M., Munzel, K. (2010). Two different sides of “chemobrain:” Determinants and non-determinants of self-perceived cognitive dysfunction in a prospective, randomized, multi-center study. Psycho-Oncology, 19(12), 13211328. doi:10.1002/pon.1695CrossRefGoogle Scholar
Hoppe-Hirsch, E., Brunet, L., Laroussinie, F., Cinalli, G., Pierre-Kahn, A., Renier, D., Hirsch, J.F. (1995). Intellectual outcome in children with malignant tumors of the posterior fossa: Influence of the field of irradiation and quality of surgery. Child's Nervous System, 11, 340346. doi:10.1007/BF00301666CrossRefGoogle ScholarPubMed
Jain, N., Brouwers, P., Okcu, M.F., Cirino, P.T., Krull, K.R. (2009). Sex-specific attention problems in long-term survivors of pediatric acute lymphoblastic leukemia. Cancer, 115(18), 42384245. doi:10.1002/cncr.24464CrossRefGoogle ScholarPubMed
Jannoun, L., Bloom, H.J. (1990). Long-term psychological effects in children treated for intracranial tumors. International Journal of Radiation Oncology, Biology, and Physics, 18, 747753. doi:10.1016/0360-3016(90)90393-XCrossRefGoogle ScholarPubMed
Kahalley, L.S., Tyc, V.L., Wilson, S.J., Nelms, J., Hudson, M.M., Wu, S., Hinds, P.S. (2011). Adolescent cancer survivors’ smoking intentions are associated with aggression, attention, and smoking history. Journal of Cancer Survivorship, 5, 123131. doi:10.1007/s11764-010-0149-3CrossRefGoogle ScholarPubMed
Krull, K.R., Gioia, G., Ness, K.K., Ellenberg, L., Recklitis, C., Leisenring, W., Zeltzer, L. (2008). Reliability and validity of the Childhood Cancer Survivor Study neurocognitive questionnaire. Cancer, 113(8), 21882197. doi:10.1002/cncr.23809CrossRefGoogle ScholarPubMed
Lezak, M. (1995). Neuropsychological assessment- third edition. New York, NY: Oxford University Press.Google Scholar
Luciana, M., Conklin, H.M., Hooper, C.J., Yarger, R.S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697712. doi:10.1111/j.1467-8624.2005.00872.xCrossRefGoogle ScholarPubMed
Mabbott, D.J., Spiegler, B.J., Greenberg, M.L., Rutka, J.T., Hyder, D.J., Bouffet, E. (2005). Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. Journal of Clinical Oncology, 23(1), 22562263. doi:10.1200/JCO.2005.01.158CrossRefGoogle ScholarPubMed
Mangeot, S., Armstrong, K., Colvin, A.N., Yeates, K.O., Taylor, H.G. (2002). Long-term executive function deficits in children with traumatic brain injuries: Assessment using the Brief Rating Inventory of Executive Function (BRIEF). Child Neuropsychology, 8(4), 271284. doi:10.1076/chin.8.4.271.13503CrossRefGoogle ScholarPubMed
Merchant, T.E., Kiehna, E.N., Kun, L.E., Mulhern, R.K., Li, C., Xiong, X., Sanford, R.A. (2006). Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. Journal of Neurosurgery, 104, 94102.Google ScholarPubMed
Minisini, A., Atalay, G., Bottomley, A., Puglisi, F., Piccart, M., Biganzoli, L. (2004). What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncology, 5, 774779. doi:10.1016/S1470-2045(04)01465-2CrossRefGoogle ScholarPubMed
Mitby, P.A., Robison, L.L., Whitton, J.A., Zevon, M.A., Gibbs, I.C., Tersak, J.M., Mertens, A.C. (2003). Utilization of special education services and educational attainment among long-term survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Cancer, 97, 11151126. doi:10.1002/cncr.11117CrossRefGoogle Scholar
Moran, C., Gillon, G. (2005). Inference comprehension of adolescents with traumatic brain injury: A working memory hypothesis. Brain Injury, 19(10), 743751. doi:10.1080/02699050500110199CrossRefGoogle ScholarPubMed
Mostow, E.N., Byrne, J., Connelly, R.R., Mulivhill, J.J. (1991). Quality of life in long-term survivors of CNS tumours of childhood and adolescence. Journal of Clinical Oncology, 9, 592599.CrossRefGoogle ScholarPubMed
Mulhern, R.K., Butler, R.W. (2004). Neurocognitive sequelae of childhood cancers and their treatment. Pediatric Rehabilitation, 7, 114. doi:10.1080/13638490310001655528CrossRefGoogle ScholarPubMed
Mulhern, R.K., Khan, R.B., Kaplan, S., Helton, S., Christensen, R., Bonner, M., Reddick, W.E. (2004). Short-term efficacy of Methylphenidate: A randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. Journal of Clinical Oncology, 22, 47954803. doi:10.1200/JCO.2004.04.128CrossRefGoogle ScholarPubMed
O'Leary, T.E., Diller, L., Recklitis, C.J. (2007). The effects of response bias on self-reported quality of life among childhood cancer survivors. Quality of Life Research, 16, 12111220. doi:10.1007/s11136-007-9231-3CrossRefGoogle ScholarPubMed
Paniak, C., Miller, H.B., Murphy, D., Andrews, A., Flynn, J. (1997). Consonant Trigrams Test for children: Development and norms. The Clinical Neuropsychologist, 11, 198200. doi:10.1080/13854049708407051CrossRefGoogle Scholar
Payne, J.M., Hyman, S.L., Shores, E.A., North, K.N. (2011). Assessment of executive function and attention in children with neurofibromatosis type 1: Relationships between cognitive measures and real-world behavior. Child Neuropsychology, 17(4), 313329. doi:10.1080/09297049.2010.542746CrossRefGoogle ScholarPubMed
Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing. Evidence from neuroimaging studies. Annals of the New York Academy of Sciences, 769, 8596. doi:10.1111/j.1749-6632.1995.tb38133.xCrossRefGoogle ScholarPubMed
Reddick, W.E., White, H.A., Glass, J.O., Wheeler, G.C., Thompson, S.J., Gajjar, A., Mulhern, R.K. (2003). Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer, 97(10), 25122519. doi:10.1002/cncr.11355CrossRefGoogle ScholarPubMed
Reeves, C.B., Palmer, S.L., Reddick, W.E., Merchant, T.E., Buchanan, G.M., Gajjar, A., Mulhern, R.K. (2006). Attention and memory function among pediatric patients with medulloblastoma. Journal of Pediatric Psychology, 31, 272280. doi:10.1093/jpepsy/jsj019CrossRefGoogle ScholarPubMed
Reimers, T.S., Mortensen, E.L., Schmiegelow, K. (2007). Memory deficits in long- term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions. Pediatric Blood Cancer, 48, 205212. doi:10.1002/pbc.20818CrossRefGoogle ScholarPubMed
Ris, M.D., Packer, R., Goldwein, J., Jones-Wallace, D., Boyett, J.M. (2001). Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy after medulloblastoma: A Children's Cancer Group study. Journal of Clinical Oncology, 19, 34703476.CrossRefGoogle ScholarPubMed
Robinson, K.E., Livesay, K., Campbell, L.K., Scaduto, M., Cannistraci, C.J., Anderson, A.W., Compas, B.E. (2010). Working memory in survivors of childhood acute lymphocytic leukemia: Functional neuroimaging analyses. Pediatric Blood Cancer, 54(4), 585590. doi:10.1002/pbc.22362CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Science of the USA, 95, 1206112068. doi:10.1073/pnas.95.20.12061CrossRefGoogle ScholarPubMed
Smith, E.E., Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 16571661. doi:10.1126/science.283.5408.1657CrossRefGoogle ScholarPubMed
Smith, E.E., Marshuetz, C., Geva, A. (2002). Working memory: Findings from neuroimaging and patient studies. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (2nd ed, pp. 5572). New York: Elsevier.Google Scholar
Sowell, E.R., Thompson, P.M., Tessner, K.D., Toga, A.W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: Inverse relationships during postadolescent brain maturation. The Journal of Neuroscience, 21, 88198829.CrossRefGoogle ScholarPubMed
Vardy, J., Tannock, I. (2007). Cognitive function after chemotherapy in adults with solid tumours. Critical Review Oncology Hematology, 63, 183202. doi:10.1016/j.critrevonc.2007.06.001CrossRefGoogle ScholarPubMed
Vriezen, E.R., Pigott, S.E. (2002). The relationship between parental report on the BRIEF and performance-based measures of executive function in children with moderate to severe traumatic brain injury. Child Neuropsychology, 8, 296303. doi:10.1076/chin.8.4.296.13505CrossRefGoogle ScholarPubMed
Waber, D.P., Pomeroy, S.L., Chiverton, A.M., Kieran, M.W., Scott, R.M., Goumnerova, L.C., Rivkin, M.J. (2006). Everyday cognitive function after craniopharyngioma in childhood. Pediatric Neurology, 34, 1319. doi:10.1016/j.pediatrneurol.2005.06.002CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence. San Antonio, TX: Harcourt Assessment.Google Scholar
Wechsler, D. (1999). Wechsler Adult Intelligence Scale – Third Edition. San Antonio, TX: Psychological Corporation.Google Scholar
Wechsler, D. (2003). Wechsler Intelligence Scale for Children- Fourth Edition, Integrated. San Antonio, TX: Psychological Corporation.Google Scholar
Wefel, J.S., Saleeba, A.K., Buzdar, A.U., Meyers, C.A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 33483356. doi:10.1002/cncr.25098CrossRefGoogle ScholarPubMed