Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T07:04:00.019Z Has data issue: false hasContentIssue false

THE BAIRE METHOD FOR THE PRESCRIBED SINGULAR VALUES PROBLEM

Published online by Cambridge University Press:  03 December 2004

F. S. DE BLASI
Affiliation:
Centro Vito Volterra, Dipartimento di Matematica, Università di Roma II (Tor Vergata), Via della Ricerca Scientifica, 00133 Roma, Italydeblasi@mat.uniroma2.it
G. PIANIGIANI
Affiliation:
Dipartimento di Matematica per le Decisioni, Università di Firenze, Via Lombroso 6/17, 50134 Firenze, Italygiulio.pianigiani@dmd.unifi.it
Get access

Abstract

The paper investigates the vectorial Dirichlet problem defined by $$\begin{cases}\sigma_j(\nabla u(x))=1, \backslash, x\in\Omega \text{a.e.},\, j=1,\ldots, n u(x)=\varphi(x),\,x\in\partial\Omega. \end{cases}$$ Here $\Omega$ is an open bounded subset of $\mathbb{R}^n$ with boundary $\partial\Omega$, and $\sigma_j(A)$ ($j=1, \ldots , n$) denote the singular values of the gradient $\nabla u(x)$. The existence of solutions is established under one of the following assumptions: $\varphi: \overline{\Omega} \longrightarrow \mathbb{R}^n$ is continuous on $\overline{\Omega}$ and locally contractive on $\Omega$, or $\varphi: \partial\Omega \longrightarrow \mathbb{R}^n$ is contractive on $\partial\Omega$. This extends a result due to Dacorogna and Marcellini. The approach is based on the Baire category method developed earlier by the authors.

Type
Notes and Papers
Copyright
The London Mathematical Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)