Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T00:31:59.458Z Has data issue: false hasContentIssue false

BETA VARIABLES AS TIMES SPENT IN [0, ∞[ BY CERTAIN PERTURBED BROWNIAN MOTIONS

Published online by Cambridge University Press:  01 August 1998

PHILIPPE CARMONA
Affiliation:
Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France. E-mail: carmona@cict.fr
FRÉDÉRIQUE PETIT
Affiliation:
Laboratoire de Probabilités, Université Paris VI, 4 Place Jussieu, Tour 56, France 75252 Paris Cedex 05. E-mail: fpe@ccr.jussieu.fr
MARC YOR
Affiliation:
Laboratoire de Probabilités, Université Paris VI, 4 Place Jussieu, Tour 56, 75252 Paris Cedex 05, France
Get access

Abstract

The paper shows that the times spent in [0, +∞) by certain processes Y which are defined by perturbations of Brownian motion involving reflection at maxima and minima are beta distributed. This result relies heavily on Ray–Knight theorems for such perturbed Brownian motions.

Type
Notes and Papers
Copyright
The London Mathematical Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)