Published online by Cambridge University Press: 01 December 1997
Let G be a permutation group on a set Ω, and let m and k be integers where 0<m<k. For a subset Γ of Ω, if the cardinalities of the sets Γg\Γ, for g∈G, are finite and bounded, then Γ is said to have bounded movement, and the movement of Γ is defined as move (Γ) =maxg∈G[mid ]Γg\Γ[mid ]. If there is a k-element subset Γ such that move (Γ)[les ]m, it is shown that some G-orbit has length at most (k2−m)\(k−m). When combined with a result of P. M. Neumann, this result has the following consequence: if some infinite subset Γ has bounded movement at most m, then either Γ is a G-invariant subset with at most m points added or removed, or Γ nontrivially meets a G-orbit of length at most m2+m+1. Also, if move (Γ)[les ]m for all k-element subsets Γ and if G has no fixed points in Ω, then either [mid ]Ω[mid ][les ]k+m (and in this case all permutation groups on Ω have this property), or [mid ]Ω[mid ][les ]5m−2. These results generalise earlier results about the separation of finite sets under group actions by B. J. Birch, R. G. Burns, S. O. Macdonald and P. M. Neumann, and groups in which all subsets have bounded movement (by the author).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.