Published online by Cambridge University Press: 08 January 2001
The paper provides a new look at compensated compactness and paracommutators. It is shown that there is a one-to-one correspondence between compensated quantities and paracommutators, that the H1-regularity of compensated quantities is equivalent to bounded mean oscillation boundedness of paracommutators, that the weak convergence of compensated quantities is equivalent to vanishing mean oscillation compactness of paracommutators, that the Schatten–von Neumann Sp-property is a natural generalization of vanishing mean oscillation compactness, that the theory of paracommutators provides a ready-made tool for Sp-regularity of compensated quantities, and that the cut-off phenomenon of paracommutators exactly coincides with the vanishing moment properties of the compensated quantities. Some further examples are given.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.