Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T09:56:48.620Z Has data issue: false hasContentIssue false

CONSTRAINED OPEN MAPPING THEOREMS AND APPLICATIONS

Published online by Cambridge University Press:  01 December 1999

W. BIAN
Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW; jrlw@maths.gla.ac.uk, wb@maths.gla.ac.uk
J. R. L. WEBB
Affiliation:
Department of Mathematics, University of Glasgow, Glasgow G12 8QW; jrlw@maths.gla.ac.uk, wb@maths.gla.ac.uk
Get access

Abstract

Some constrained open mapping theorems are obtained via Ekeland's variational principle. The constraint need only be a closed subset when the mapping is assumed to be Lipschitz, or a closed convex cone when the mapping is assumed to be closed. Generalizations of some previous results of Welsh and others are obtained. Apart from the presence of a constraint and a different method, the differentiability assumptions made are weaker. As applications, two results on the constrained controllability of nonlinear systems are given.

Type
Notes and Papers
Copyright
The London Mathematical Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)