Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T19:36:11.236Z Has data issue: false hasContentIssue false

DISTANCE ENTRE PUISSANCES D'UNE UNIT APPROCHÉE BORNÉE

Published online by Cambridge University Press:  11 July 2003

M. BERKANI
Affiliation:
Département de Mathématiques, Faculté des Sciences, Université Mohamed 1, 60000 Oujda, Moroccoberkani@sciences.univ-oujda.ac.ma
J. ESTERLE
Affiliation:
Laboratoire de Mathematiques Pures, UMR 5467, Universit Bordeaux I, 351 cours de la Liberation, 33405 Talence, Franceesterle@math.u-bordeaux.fr
A. MOKHTARI
Affiliation:
Centre Universitaire, 3000 Laghouat, Algeria
Get access

Abstract

Let $A$ be a Banach algebra and let $p$ and $q$ be two positive integers. We show that if

$A$ has a left bounded sequential approximate identity $(e_n)_{n\ge1}$ such that ${\rm lim}\,{\rm inf}_{n\to+\infty}\|e^p_n-e^{p+q}_n\| < ({p \over {p+q}})^{p\over q}{q\over{p+q}}$ then

$A$ has a left-bounded sequential identity $(f_n)_{n\ge1}$ such that $f^2_n = f_n$ for $n\ge1$. A simple example shows that the constant $({p\over {p+q}})^{p\over q}{q\over{p+q}}$ is best possible.

This result is based on some algebraic or integral formulae which associate an idempotent to elements of a Banach algebra satisfying some inequalities involving polynomials or entire functions.

Keywords

Type
Notes and Papers
Copyright
The London Mathematical Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)