Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T14:11:22.874Z Has data issue: false hasContentIssue false

MAJORATIONS UNIFORMES DE NORMES D'INVERSES DANS LES ALGÈBRES DE BEURLING

Published online by Cambridge University Press:  24 March 2003

O. EL-FALLAH
Affiliation:
Departement de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Moroccoelfallah@fsr.ac.ma
A. EZZAARAOUI
Affiliation:
Departement de Mathématiques et Informatique, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Moroccoelfallah@fsr.ac.ma
Get access

Abstract

The Beurling algebras $l^1({\cal D},\omega)\;({\cal D}={\bb N},{\bb Z})$ that are semi-simple, with compact Gelfand transform, are considered. The paper gives a necessary and sufficient condition (on $\omega$ ) such that $l^1({\cal D},\omega)$ possesses a uniform quantitative version of Wiener's theorem in the sense that there exists a function $\phi:]0,+\infty[\longrightarrow ]0,+\infty[$ such that, for every invertible element $x$ in the unit ball of $l^1({\cal D},\omega)$ , we have \[ \|x^{-1}\|\le \phi(r(x^{-1}))\quad r(x^{-1})\hbox{ is the spectral radius of }x^{-1}. \]

Type
Research Article
Copyright
The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)