Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T10:23:06.328Z Has data issue: false hasContentIssue false

ON PRIME ENDS AND PLANE CONTINUA

Published online by Cambridge University Press:  24 March 2003

J. J. CARMONA
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spainjcar@mat.uab.es
C. POMMERENKE
Affiliation:
MA 8-2, Institut für Mathematik, Technische Universität, D-10623 Berlin, Germanypommeren@math.tu-berlin.de
Get access

Abstract

Let $f$ be a conformal map of the unit disk ${\bb D}$ onto the domain $G \subset \hat{\bb C} = {\bb C} \cup \{\infty\}$ . We shall always use the spherical metric in $\hat{\bb C}$ .

Carathéodory [3] introduced the concept of a prime end of $G$ in order to describe the boundary behaviour of $f$ in geometric terms; see for example [6, Chapter 9] or [12, Section 2.4]. There is a bijective map $\hat{f}$ of ${\bb T} = \partial {\bb D}$ onto the set of prime ends of $G$ .

Type
Notes and Papers
Copyright
© The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by grants PB98-1242-C02-02 (Ministerio de Educatión y Cultura) and 2000-SGR-00059 (Generalitat de Catalunya).