Published online by Cambridge University Press: 30 October 2001
The right-invariant Riemannian metric on simplex shape spaces in fact makes them particular Riemannian symmetric spaces of non-compact type. In the paper, the general properties of such symmetric spaces are made explicit for simplex shape spaces. In particular, a global matrix coordinate representation is suggested, with respect to which several geometric features, important for shape analysis, have simple and easily computable expressions. As a typical application, it is shown how to locate the Fréchet means of a class of probability measures on the simplex shape spaces, a result analogous to that for Kendall's shape spaces.