Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T16:53:45.675Z Has data issue: false hasContentIssue false

ON THE INDEX OF VECTOR FIELDS TANGENT TO HYPERSURFACES WITH NON-ISOLATED SINGULARITIES

Published online by Cambridge University Press:  24 March 2003

L. GIRALDO
Affiliation:
Departamento de Algebra, Facultad de Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; giraldo@mat.ucm.es
X. GÓMEZ-MONT
Affiliation:
CIMAT, AP 402, Guanajuato 36000, Mexico; gmont@fractal.cimat.mx
P. MARDEšIĆ
Affiliation:
Laboratoire de Topologie, Université de Bourgogne, UMR 5584 du CNRS, BP 44870, 21078-Dijon Cedex, France; mardesic@u-bourgogne.fr
Get access

Abstract

Let $F$ be a germ of a holomorphic function at $0$ in ${\bb C}^{n+1}$ , having $0$ as a critical point not necessarily isolated, and let $\tilde{X}:= \sum^n_{j=0} X^j(\partial/\partial z_j)$ be a germ of a holomorphic vector field at $0$ in ${\bb C}^{n+1}$ with an isolated zero at $0$ , and tangent to $V := F^{-1}(0)$ . Consider the ${\cal O}_{V,0}$ -complex obtained by contracting the germs of Kähler differential forms of $V$ at $0$ \renewcommand{\theequation}{0.\arabic{equation}} \begin{equation} \Omega^i_{V,0}:=\frac{\Omega^i_{{\bb C}^{n+1},0}}{F\Omega^i_{{\bb C}^{n+1},0}+dF\wedge{\Omega^{i-1}}_{{\bb C}^{n+1}},0} \end{equation} with the vector field <formula form="inline" disc="math" id="frm14"><formtex notation="AMSTeX"> $X:=\tilde{X}|_V$ on $V$ : \begin{equation} 0\longleftarrow {\cal O}_{V,0} {\buildrel X\over\longleftarrow}\,\Omega_{V,0}^1\,{\buildrel X\over\longleftarrow}\, \cdots \,{\buildrel X\over\longleftarrow}\, \Omega_{V,0}^n\, {\buildrel X\over\longleftarrow}\, \Omega_{V,0}^{n+1}\longleftarrow 0. \end{equation}

Type
Research Article
Copyright
The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by DGES PB96-0659, BFM2000-0621 and Universidad Complutense, Spain, CONACYT 28541-E, Mexico, the European Project TMR ‘Singularités des equations différentielles et feuilletages’, PICS-CNRS France{Mexico and Université de Bourgogne, France.