Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T09:53:46.521Z Has data issue: false hasContentIssue false

SYMMETRIC POLYNOMIALS ON REARRANGEMENT-INVARIANT FUNCTION SPACES

Published online by Cambridge University Press:  01 April 1999

MANUEL GONZÁLEZ
Affiliation:
Facultad de Ciencias, Universidad de Cantabria, Avenida de los Castros s/n, 39071-Santander, Spain; gonzalem@ccaix3.unican.es
RAQUEL GONZALO
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, 28040-Madrid, Spain; rngonzalo@fi.upm.es, jaramil@eucmax.sim.ucm.es
JESÚS ANGEL JARAMILLO
Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad Complutense, 28040-Madrid, Spain; rngonzalo@fi.upm.es, jaramil@eucmax.sim.ucm.es
Get access

Abstract

The exact representation of symmetric polynomials on Banach spaces with symmetric basis and also on separable rearrangement-invariant function spaces over [0, 1] and [0, ∞) is given. As a consequence of this representation it is obtained that, among these spaces, [lscr ]2n, L2n[0, 1], L2n[0, ∞) and L2n[0, ∞)∩L2m[0, ∞) where n, m are both integers are the only spaces that admit separating polynomials.

Type
Notes and Papers
Copyright
The London Mathematical Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)