Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T00:42:11.713Z Has data issue: false hasContentIssue false

SYSTEMS OF INEQUALITIES AND NUMERICAL SEMIGROUPS

Published online by Cambridge University Press:  24 March 2003

J. C. ROSALES
Affiliation:
Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spainjrosales@ugr.espedro@ugr.esjigg@ugr.es
P. A. GARCÍA-SÁNCHEZ
Affiliation:
Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spainjrosales@ugr.espedro@ugr.esjigg@ugr.es
J. I. GARCÍA-GARCÍA
Affiliation:
Departamento de Álgebra, Universidad de Granada, E-18071 Granada, Spainjrosales@ugr.espedro@ugr.esjigg@ugr.es
M. B. BRANCO
Affiliation:
Departamento de Matemática, Universidade de Évora, 7000 Évora, Portugalmbb@dmat.uevora.pt
Get access

Abstract

A one-to-one correspondence is described between the set ${\cal J}(m)$ of numerical semigroups with multiplicity $m$ and the set of non-negative integer solutions of a system of linear Diophantine inequalities. This correspondence infers in ${\cal J}(m)$ a semigroup structure and the resulting semigroup is isomorphic to a subsemigroup of ${\bb N}^{m-1}$ . Finally, this result is particularized to the symmetric case.

Type
Research Article
Copyright
The London Mathematical Society, 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was supported by the project BFM2000-1469.