Published online by Cambridge University Press: 01 April 2000
In [1] Brauer puts forward a series of questions on group representation theory in order to point out areas which were not well understood. One of these, which we denote by (B1), is the following: what information in addition to the character table determines a (finite) group? In previous papers [5, 7–13], the original work of Frobenius on group characters has been re-examined and has shed light on some of Brauer's questions, in particular an answer to (B1) has been given as follows.
Frobenius defined for each character χ of a group G functions χ(k)[ratio ]G(k) → [Copf ] for k = 1, …, degχ with χ(1) = χ. These functions are called the k-characters (see [10] or [11] for their definition). The 1-, 2- and 3-characters of the irreducible representations determine a group [7, 8] but the 1- and 2-characters do not [12]. Summaries of this work are given in [11] and [13].
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.