Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T03:45:53.131Z Has data issue: false hasContentIssue false

Benthic infauna associated with a shallow-water hydrothermal system of Punta Mita (Mexico)

Published online by Cambridge University Press:  17 March 2023

M. C. Rodríguez-Uribe*
Affiliation:
Departamento de Ciencias Exactas, Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, Jalisco 48280, México
F. J. Núñez-Cornú
Affiliation:
C.A. Sismología y Volcanología de Occidente (SisVoc), Centro Universitario de la Costa, Universidad de Guadalajara, Puerto Vallarta, Jalisco 48280, México
R. M. Prol-Ledesma
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito Exterior S/N, 04510, Ciudad de México, México
P. Salazar-Silva
Affiliation:
Tecnológico Nacional de México, Instituto Tecnológico de Bahía de Banderas, Crucero a Punta Mita S/N, 63763, La Cruz de Huanacaxtle, Nayarit, México
*
Author for correspondence: M. C. Rodríguez-Uribe, E-mail: maria.ruribe@academicos.udg.mx

Abstract

The shallow-water hydrothermal system of Punta Mita in Banderas Bay is located on the fault called Fisura de las Coronas off Punta Pantoque beach. In this area, three sites with hydrothermal vents were studied at a depth of 9 m. This study aimed to characterize the structure of the benthic infauna communities that coexist in this hydrothermal system; therefore, physicochemical parameters were measured and the organisms found in the sediment samples were identified up to the class taxonomic level. The highest temperatures (89°C) were recorded within the hydrothermal influence area, which was reflected in an inverse relationship with pH, conductivity and salinity. Sediment temperature profiles increased at greater depth. A total of 371 individuals were found and these were grouped into eight classes: Malacostraca, Maxillopoda, Gastropoda, Bivalvia, Scaphopoda, Polychaeta, Leptocardii and Stenolaemata. The Malacostraca class was the most abundant with 240 individuals, while the Scaphopoda was the lowest with 3. The organic matter contents in the sediments were higher in the areas adjacent to the hydrothermal activity. The high temperature of the hydrothermal discharges structures the benthic community since it was the factor that differed most significantly in the study sites, causing lower abundances in the area of hydrothermal influence compared with the more distant areas. Despite the above, it is concluded that the benthic community of the area with hydrothermal activity is part of the community adjacent to this influence, only in lower numbers.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Castillo, L, Hermoso-Salazar, M, Estradas-Romero, A, Rivas, G and Prol-Ledesma, RM (2018) Composition and spatial distribution of the meiofauna in the Wagner and Consag basins, Gulf of California, Mexico. Cahiers de Biologie Marine 59, 245256.Google Scholar
Anderson, MJ (2005) PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. New Zealand: Department of Statistics, University of Auckland.Google Scholar
Anderson, M, Gorley, RN and Clarke, KR (2008) PERMANOVA + for PRIMER User Manual, vol. 1. Plymouth, UK: Prim Ltd Regist, 1:218.Google Scholar
Arellano-Ramirez, Y, Kretzschmar, TG and Hernandez-Martinez, R (2017) Water-rock-microbial interactions in the hydrothermal spring of Puertecitos, Baja California, Mexico. Procedia Earth and Planetary Science 17, 865868.CrossRefGoogle Scholar
Bagarinao, T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquatic Toxicology 24, 2162.CrossRefGoogle Scholar
Boudouresque, CF and Verlaque, M (2002) Biological pollution in the Mediterranean Sea: invasive vs introduced macrophytes. Marine Pollution Bulletin 44, 3238.CrossRefGoogle Scholar
Brusca, RC, Moore, W and Shuster, SM (2016) Invertebrates. 3rd edition. Oxford: Oxford University Press.Google Scholar
Canet, C and Prol-Ledesma, RM (2006) Procesos de mineralización en manantiales hidrotermales submarinos someros. Ejemplos en México. Boletín de La Sociedad Geológica Mexicana 58, 83102.CrossRefGoogle Scholar
Canet, C and Prol-Ledesma, RM (2007) Mineralizing processes at shallow submarine hydrothermal vents: examples from Mexico. Special Paper of the Geological Society of America 422, 359376.Google Scholar
Canet, C, Prol-Ledesma, RM and Melgarejo, JC (2000) El sistema hidrotermal de Punta Mita (México): un ejemplo de depósito exhalativo submarino actual. Cadernos Lab. Xeolóxico de Laxe 25, 325327.Google Scholar
Cardigos, F, Colaço, A, Dando, PR, Ávila, SP, Sarradin, PM, Tempera, F, Conceição, P, Pascoal, A and Santos, RS (2005) Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chemical Geology 224, 153168.CrossRefGoogle Scholar
Chevaldonne, P, Desbruyeres, D and Childress, JJ (1992) Some like it hot and some even hotter. Nature 359, 593594.CrossRefGoogle Scholar
Couto, RP, Rodrigues, AS and Neto, AI (2015) Shallow-water hydrothermal vents in the Azores (Portugal). Journal of Integrated Coastal Zone Management 15, 495505.Google Scholar
Dando, PR, Hughes, JA, Leahy, Y, Niven, SJ, Taylor, LJ and Smith, C (1995) Gas venting rates from submarine hydrothermal areas around the island of Milos, Hellenic Volcanic Arc. Continental Shelf Research 15, 913929.CrossRefGoogle Scholar
Dean, WE (1974) Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
De León-González, JA, Bastida-Zavala, JR, Carrera-Parra, F, García-Garza, ME, Peña-Rivera, A, Salazar-Vallejo, SI and Solis-Weiss, V (2009) Poliquetos (Annelida: Polychaeta) de México y América Tropical. (U. A. de N. L. Dirección de Publicaciones, Ed.). Mexico.Google Scholar
Del Moral-Flores, LF, Guadarrama-Martínez, MA and Flores-Coto, C (2016) Composición taxonómica y distribución de los cefalocordados (Cephalochordata: Amphioxiformes) en México. Latin American Journal of Aquatic Research 44, 497503.CrossRefGoogle Scholar
Downing, JA (1979) Aggregation, transformation, and the design of benthos sampling programs. Journal of the Fisheries Research Board of Canada 36, 14541463.CrossRefGoogle Scholar
Engel, BE, Hallock, P, Price, RE and Pichler, T (2015) Shell dissolution in larger benthic foraminifers exposed to pH and temperature extremes: results from an in situ experiment. Journal of Foraminiferal Research 45, 190203.CrossRefGoogle Scholar
Fabricius, KE, Langdon, C, Uthicke, S, Humphrey, C, Noonan, S, De'ath, G, Okazaki, R, Muehllehner, N, Glas, MS and Lough, JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1, 165169.CrossRefGoogle Scholar
Fauchald, K and Jumars, PA (1979) The diet of worms: a study of polychaete feeding guilds. Marine Biology: An Annual Review 17, 193284.Google Scholar
Fernández de la Vega-Márquez, T and Prol-Ledesma, RM (2011) Imágenes landsat TM y modelo digital de elevación para la identificación de lineamientos y mapeo litológico en punta mita (México). Boletin de La Sociedad Geologica Mexicana 63, 109118.CrossRefGoogle Scholar
Galván-Villa, CM, Ríos-Jara, E and Ayón-Parente, M (2017) Nuevos registros de la lanceta de California branchiostoma californiense (Cephalochordata: Branchiostomidae) de la costa Pacífica de México. Revista Mexicana de Biodiversidad 88, 995998.CrossRefGoogle Scholar
Gamenick, I, Abbiati, M and Giere, O (1998) Field distribution and sulphide tolerance of Capitella capitata (Annelida: Polychaeta) around shallow water hydrothermal vents off Milos (Aegean Sea). A new sibling species? Marine Biology 130, 447453.CrossRefGoogle Scholar
Gamenick, I, Jahn, A, Vopel, K and Giere, O (1996) Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Marine Ecology Progress Series 144, 7385.CrossRefGoogle Scholar
Garcia-Fernàndez, J and Benito-Gutiérrez, È (2009) It's a long way from amphioxus: descendants of the earliest chordate. BioEssays 31, 665675.CrossRefGoogle ScholarPubMed
Garrison, T and Ellis, R (2016) Oceanography: An Invitation to Marine Science, 9th edition. Boston, MA: Cengage Learning.Google Scholar
Gower, JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325338.CrossRefGoogle Scholar
Hall-Spencer, JM, Rodolfo-Metalpa, R, Martin, S, Ransome, E, Fine, M, Turner, SM, Rowley, SJ, Tedesco, D and Buia, MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 9699.CrossRefGoogle ScholarPubMed
Kamenev, GM, Fadeev, VI, Selin, NI, Tarasov, VG and Malakhov, VV (1993) Composition and distribution of macro- and meiobenthos around sublittoral hydrothermal vents in the Bay of Plenty, New Zealand. New Zealand Journal of Marine and Freshwater Research 27, 407418.CrossRefGoogle Scholar
Legendre, P and Legendre, L (2012) Numerical Ecology. Developments in Environmental Modelling. Amsterdam: Elsevier B.V.Google Scholar
Marques-Mendes, AR (2008) Influência Das Fontes Hidrotermais Marinhas De Baixa Profundidade Na Composição Das Comunidades De Meiofauna. Ponta Delgada, Azores: Universidade Dos Açores.Google Scholar
Melwani, AR and Kim, SL (2008) Benthic infaunal distributions in shallow hydrothermal vent sediments. Acta Oecologica 33, 162175.CrossRefGoogle Scholar
Morri, C, Blanchi, CN, Cocito, S, Peirano, A, De Biase, AM, Aliani, S, Pansini, M, Boyer, M, Ferdeghini, F, Pestarino, M and Dando, P (1999) Biodiversity of marine sessile epifauna at an Aegean island subject to hydrothermal activity: Milos, eastern Mediterranean Sea. Marine Biology 135, 729739.CrossRefGoogle Scholar
Núñez-Cornú, FJ, Prol-Ledesma, RM, Cupul-Magaña, A and Suárez-Plascencia, C (2000) Near shore submarine hydrothermal activity in Bahia Banderas, western Mexico. Geofisica Internacional 39, 171178.CrossRefGoogle Scholar
Price, RE and Giovannelli, D (2017) A review of the geochemistry and microbiology of marine shallow-water hydrothermal vents. In Reference Module in Earth Systems and Environmental Sciences. Amsterdam: Elsevier, p. 30.Google Scholar
Prol-Ledesma, RM and Canet, C (2014) Evaluación y explotación de los recursos geotérmicos del océano. In Low Pfeng AM and Recagno EP (eds), La Frontera Final: el Océano Profundo . Mexico: SEMARNAT-INECC, pp. 1130.Google Scholar
Prol-Ledesma, RM, Canet, C, Torres-Vera, MA, Forrest, MJ and Armienta, MA (2004) Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico. Journal of Volcanology and Geothermal Research 137, 311328.CrossRefGoogle Scholar
Prol-Ledesma, RM, Canet, C, Villanueva-Estrada, RE and Ortega-Osorio, A (2010) Morphology of pyrite in particulate matter from shallow submarine hydrothermal vents. American Mineralogist 95, 15001507.CrossRefGoogle Scholar
Prol-Ledesma, RM, Carrillo De La Cruz, JL, Torres-Vera, MA and Estradas-Romero, A (2021) High heat flow at the SW passive margin of the Gulf of California. Terra Nova 2, 18.Google Scholar
Prol-Ledesma, RM, Dando, PR and de Ronde, CEJ (2005) Special issue on ‘shallow-water hydrothermal venting’. Chemical Geology 224, 14.CrossRefGoogle Scholar
Reeves, EP, Seewald, JS, Saccocia, P, Bach, W, Craddock, PR, Shanks, WC, Sylva, SP, Walsh, E, Pichler, T and Rosner, M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta 75, 10881123.CrossRefGoogle Scholar
Rodríguez-Uribe, MC, Núñez-Cornú, FJ, Chávez-Dagostino, RM and Trejo-Gómez, E (2020) Granulometric analysis of shallow vents sediments at Banderas Bay (Mexico). Journal of Marine Science and Engineering 8, 111.CrossRefGoogle Scholar
Tarasov, VG (1999) The Coastal Ecosystems and Shallow-Water Hydrothermal Venting. Vladivostok: Russian: Dalnauka Press.Google Scholar
Tarasov, VG, Gebruk, AV, Mironov, AN and Moskalev, LI (2005) Deep-sea and shallow-water hydrothermal vent communities: two different phenomena? Chemical Geology 224, 539.CrossRefGoogle Scholar
Tarasov, VG, Gebruk, AV, Shulkin, VM, Kamenev, GM, Fadeev, VI, Kosmynin, VN, Malakhov, VV, Starynin, DA and Obzhirov, AI (1999) Effect of shallow-water hydrothermal venting on the biota of Matupi Harbour (Rabaul Caldera, New Britain Island, Papua New Guinea). Continental Shelf Research 19, 79116.CrossRefGoogle Scholar
Thiermann, F, Windoffer, R and Giere, O (1994) Selected meiofauna around shallow water hydrothermal vents off Milos (Greece): ecological and ultrastructural aspects. Vie et Milieu 44, 215226.Google Scholar
Tsutsumi, H, Wainright, S, Montani, S, Saga, M, Ichihara, S and Kogure, K (2001) Exploitation of a chemosynthetic food resource by the polychaete Capitella sp. I. Marine Ecology Progress Series 216, 119127.CrossRefGoogle Scholar
Tulkki, P (1968) Effect of pollution on the benthos off Gothenburg. Helgoländer Wissenschaftliche Meeresuntersuchungen 17, 209215.CrossRefGoogle Scholar
Vanreusel, A, Van Den Bossche, I and Thiermann, F (1997) Free-living marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Marine Ecology Progress Series 157, 207219.CrossRefGoogle Scholar
Vidal, VMV, Vidal, FV and Isaacs, JD (1978) Coastal submarine hydrothermal activity off Northern Baja California. Journal of Geophysical Research 83, 17571774.CrossRefGoogle Scholar
Vismann, B (1990) Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Marine Ecology Progress Series 59, 229238.CrossRefGoogle Scholar
Yang, K and Scott, SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383, 420423.CrossRefGoogle Scholar
Zhou, B, Wang, T, Li, Y and Bralts, V (2017) Effects of microbial community variation on bio-clogging in drip irrigation emitters using reclaimed water. Agricultural Water Management 194, 139149.CrossRefGoogle Scholar