Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T18:01:21.215Z Has data issue: false hasContentIssue false

Carbohydrate levels in Patella

Published online by Cambridge University Press:  11 May 2009

R. J. C. Barry
Affiliation:
Department of Physiology, University of Sheffield
K. A. Munday
Affiliation:
Department of Physiology and Biochemistry, University of Southampton

Extract

The limited observations available on blood sugar levels of Mollusca suggest that they are very low. Values of 2–14 mg % glucose have been reported for Aplysia (see Kisch, 1929; Berthoumeyroux, 1935), and even the higher levels recorded for Octopus and Sepia species by Bierry & Giaja (1909), Berthoumeyroux (1935) and Derrien (1938) range only from 20 to 32 mg % glucose. The majority of these blood sugar analyses were based on the Hagedorn & Jensen (1923) technique. Landgrebe & Munday (1954) have shown that this technique may have an inherent blank error of 5 mg % glucose equivalent, and consequently it is not a suitable method for critical analyses of these low molluscan blood sugar levels.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berthoumeyroux, M., 1935. Recherches sur le pouvoir réducteur des liquides du milieu intéieur de quelques invertébrés marins. Bull. Soc. sci. Arcachon, T. 32, pp. 111–53.Google Scholar
Bierry, H. & Giaja, J., 1909. Dosage du sucre du sang chez le poulpe (Octopus vulgaris L.). C.R. Soc. Biol., Paris, T. 66, pp. 579–80.Google Scholar
Brand, Th. Von, 1931. Der Jahreszyklus im Stoffbestand der Weinbergschnecke (Helix pomatia). Z. vergl. Physiol., Bd. 14, pp. 200–64.CrossRefGoogle Scholar
Couteaux-Bargeton, M. 1947. Variations du taux de glycogene dans differents organes de 1'huître. Bull. Soc. zool. Fr., T. 71, pp. 121–6.Google Scholar
Derrien, Y., 1938. Repartition du chlorure de sodium et du glucose entre le plasma et le corps vitre chez Octopus vulgaris Link, et Sepia officinalis L. C. R. Soc. Biol, Paris, T. 127, pp. 1011–14.Google Scholar
Evans, R. G., 1953. Studies on the biology of British limpets—the genus Patella on the south coast of England. Proc. zool. Soc. Lond., Vol. 123, pp. 357–76.CrossRefGoogle Scholar
Folin, O. & Malmros, H. J. 1929. An improved form of Folin's micro method for blood sugar determinations. J. biol. Chem., Vol. 83, pp. 115–20.CrossRefGoogle Scholar
George, J. C. & Desai, B. N., 1954. On the liver fat in Pila globosa (Swainson). J. Anim. Morph. Physiol., Vol. 1, pp. 56–8.Google Scholar
Good, C. A., Kramer, H. & Somogyi, M., 1933. The determination of glycogen. J. biol. Chem., Vol. 100, pp. 485–91.CrossRefGoogle Scholar
Gray, I. E. & Hall, F. G., 1930. Blood sugar and activity in fishes with notes on the action of insulin. Biol. Bull, Woods Hole, Vol. 58, pp. 217–23.Google Scholar
Hagedorn, H. C. & Jensen, B. N., 1923. Zur Mikrobestimmung des Blutzuckers mittels Ferricyanid. Biochem. Z., Bd. 135, pp. 4658.Google Scholar
Holtz, F. & Brand, T. Von, 1940. Quantitative studies upon some blood constituents of Helix pomatia. Biol. Bull., Woods Hole, Vol. 79, pp. 423–31.Google Scholar
Kisch, B., 1929. Der Gehalt des Blutes einiger Wirbelloser an reduzierenden Substanzen. Biochem. Z., Bd. 211, pp. 292–4.Google Scholar
Landgrebe, F. W. & Munday, K. A., 1954. A modified Folin-Malmros technique for the estimation of blood sugar, particularly suitable for low values or for micro work. Quart. J. exp. Physiol., Vol. 39, pp. 1722.CrossRefGoogle ScholarPubMed
Lustig, B., Ernst, T. & Reuss, E., 1937. Die Zusammensetzung des Blutes von Helix pomatia bei Sommer -und Wintertieren. Biochem Z., Bd. 290, pp. 95–8.Google Scholar
May, F., 1934. Chemische und biologische Untersuchungen iiber Galaktogen. (Biologischer Teil: Der Jahreszyklus im Galaktogen- und Glykogenbestand der Weinbergschnecke.) Z. Biol., Bd. 95, pp. 401–30.Google Scholar
Mitchell, P. H., 1915–16. Nutrition of oysters: glycogen formation and storage. Bull. U.S. Bur. Fish., Vol. 35, pp. 151–62.Google Scholar
Okazaki, K. & Kobayashi, S., 1929. The seasonal variation of the glycogen content in the oyster, Ostrea drcumpicta Pils. Sci. Rep. TShoku Univ., Ser. D, Vol. 4, pp. 183–91.Google Scholar
Russell, E. S., 1923. Report on seasonal variation in the chemical composition of oysters. Fish. Invest., Lond., Ser. 2, Vol. 6, No. 1.Google Scholar
Schwarz, K., 1935. Über den Blutzucker der Weinbergschnecke (Helix pomatia L.). Biochem. Z., Bd. 275, pp. 262–9.Google Scholar
Wolf-Heidegger, G., 1935. Der Kohlenhydratstoffwechsel der Weinbergschnecke (Helix pomatia L.) unter der Einwirkung von Insulin und Adrenalin. Biochem.Z., Bd. 279, pp. 5563.Google Scholar