Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T22:48:55.944Z Has data issue: false hasContentIssue false

Chloroplasts as symbiotic organelles in the digestive gland of Elysia viridis [Gastropoda: opisthobranchia]

Published online by Cambridge University Press:  11 May 2009

D. L. Taylor
Affiliation:
Zoology Department, University College of Swansea

Extract

An investigation into the histochemistry and ultrastructure of the digestive gland of Elysia viridis has revealed the presence of two types of epithelial cells, one of which contains numerous, structurally intact algal chloroplasts. Chromatographic studies indicate that these chloroplasts are derived from the animal's specific food, the alga Codium tomentosum. Following ingestion by the animal these do not appear to be digested or excreted, but accumulate and are maintained in the digestive cells. Autoradiographic studies suggest that they may be of some benefit to the animal as symbiotic organelles. Such a phenomenon may prove to be widespread among related species of Opisthobranchia.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, C. W. M., 1957. A p-dimethylaminobenzaldehyde-nitrite method for the histochemical demonstration of tryptophane and related compounds. J. Clin. Path., Vol. 10, pp. 5666.CrossRefGoogle ScholarPubMed
Adams, C. W. M. & Sloper, J. C., 1955. Technique for demonstrating neurosecretory material in the human hypothalamus. Lancet, Vol. 1, pp. 651–2.CrossRefGoogle Scholar
Adams, C. W. M. & Sloper, J. C., 1956. The hypothalamic elaboration of posterior pituitary principles in man, the rat and dog. Histochemical evidence from a performic acid-Alcian blue technique for cystine. J. Endocr., Vol. 13, pp. 221–8.CrossRefGoogle Scholar
Brandt, K., 1883. Über die morphologische und physiologische Bedertung des Chlorophylls bie Thieren. Mitt. zool. Stn Neapel, Bd. 4, pp. 191302.Google Scholar
Buchner, P., 1930. Tier und Pflanze in Symbiose, 900 pp. Berlin: Verlag von Gebriider Borntraeger.Google Scholar
Daoust, R., 1965. Histochemical localization of enzyme activities by substrate film methods: ribonucleases, deoxyribonucleases, proteases, amylase, and hyaluronidase. Int. Rev. Cytol., Vol. 18, pp. 191221.CrossRefGoogle ScholarPubMed
David, H. & Gotze, J., 1963. Electronmikroskopische Befund an der Mittledarmdruse von Schnecken. Z. mikrosk. -anat. Forsch., Bd. 70, pp. 252–72.Google Scholar
Denegri, A. & Denegri, G., 1876. Farbstoffe aus Elysia viridis. Ber. dt. chem. Ges., Jahrg. 9, pp. 84–5.Google Scholar
Echlin, P., 1966. Origins of photosynthesis. Science Journal, Vol. 2, pp. 42–9.Google Scholar
Famintzin, A., 1907. Die Symbiose als Mittel der Synthese von Organismen. Biol. Zbl. Vol. 27, pp. 353–72.Google Scholar
Fretter, V., 1937. The structure and function of the alimentary canal of some species of Polyplacophora (Mollusca). Trans. R. Soc. Edinb., Vol. 59, pp. 119–64.CrossRefGoogle Scholar
Fretter, V., 1938. The structure and function of the alimentary canal of some Tecti-branch molluscs, with a note on excretion. Trans. R. Soc. Edinb., Vol. 59, pp.599646.CrossRefGoogle Scholar
Fretter, V., 1940. On the structure of the gut of the Ascoglossan nudibranchs. Proc. zool. Soc. Lond., Vol. 110, pp. 185–98.CrossRefGoogle Scholar
Fretter, V. & Graham, A., 1962. British Prosobranch Molluscs. Roy. Soc. Publs., London, 755 pp.Google Scholar
Gomori, G., 1950. An improved histochemical technique for acid phosphatase. Stain Technol, Vol. 25, pp. 81–5.CrossRefGoogle Scholar
Gonor, J. J., 1966. Marine Biology, III, p. 127. Proceedings of the Third International Interdisciplinary Conference. Ed. Edmondson, W. T.. New York: New York Academy of Sciences.Google Scholar
Graham, A., 1932. On the structure and function of the alimentary canal of the limpet. Trans. R. Soc. Edinb., Vol. 57, pp. 287308.CrossRefGoogle Scholar
Graham, A., 1937. On the structure and function of the alimentary canal of the Aeolid molluscs, with a discussion on their nematocyts. Trans. R. Soc. Edinb., Vol. 59, pp. 267307.CrossRefGoogle Scholar
Henneguy, L., 1925. Contribution à l'histologie des nudibranches. Archs. Anat. microsc. Vol. 21, pp. 400–68.Google Scholar
Kawaguti, S. & Yamasu, T., 1965. Electron microscopy on the symbiosis between an elysioid gastropod and the chloroplasts of a green algae. Biol. J. Okayama Univ., Vol. 3, pp. 5765.Google Scholar
Kawaguti, S., Yamamota, M. & Kamishima, Y., 1965. Electron microscopy on the symbiosis between a blue-green alga and an Opisthobranch, Placobranchus. Proc. Jap. Acad., Vol. 41, pp. 614–17.CrossRefGoogle Scholar
Keeble, F. & Gamble, F. W., 1907. The origin and nature of the green cells of Convoluta roscoffensis. Q. Jl microsc. Sci., Vol. 51, pp. 167219.Google Scholar
Luft, J. H., 1956. Permanganate—a new fixative for electron microscopy. J. biophys. biochem. Cytol., Vol. 2, pp. 799802.CrossRefGoogle Scholar
Manton, I. & Parke, M., 1965. Observations on the fine structure of two species of Platymonas, with special reference to flagellar scales and the mode of origin of the theca. J. mar. biol. Ass. U.K., Vol. 45, pp. 743–54.CrossRefGoogle Scholar
Maunsbach, A., 1966. Absorption of I125-labelled homologous albumin by rat kidney proximal tubule cells. A study of micro-perfused single proximal tubules by electron microscopic autoradiography and histochemistry. J. Ultrastruct. Res., Vol. 15, pp. 197241.CrossRefGoogle Scholar
Mereschkowsky, C., 1905. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zbl., Vol. 25, p. 593.Google Scholar
Movat, H. Z., 1955. Demonstration of all connective tissue elements in a single section. Pentachrome Stains. Archs Path., Vol. 60, pp. 289–95.Google Scholar
Naville, A., 1926. Notes sur les Eolidies. Un Eolidien d'eau saumâtre. Origine des nématocystes. Zooxanthelles et homochromie. Revue suisse Zool., Vol. 33, pp. 251–67.CrossRefGoogle Scholar
Oschman, J. & Grey, P., 1965. A study of the fine structure of Convuluta roscoffensis and its endosymbiotic algae. Trans. Am. microsc. Soc., Vol. 84, pp. 368–75.CrossRefGoogle Scholar
Pearse, A. G. E., 1960. Histochemistry, Theroretical and Applied, 998 pp. London: Churchill.Google Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol., Vol. 17, p. 208.CrossRefGoogle ScholarPubMed
Richardson, K. C., Jarett, L. & Finke, E. H., 1960. Embedding in epoxy resins for ultra-thin sectioning in electron microscopy. Stain Technol., Vol. 35, pp. 313–23.CrossRefGoogle Scholar
Ris, H., 1961. Ultrastructure and molecular organization of genetic systems. Can. J. Genet. Cytol., Vol. 3, pp. 95120.CrossRefGoogle ScholarPubMed
Ris, H. & Plaut, W., 1962. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell Biol., Vol. 13, pp. 383–91.CrossRefGoogle ScholarPubMed
Salpeter, M. M. & Bachmann, L., 1964. Autoradiography with the electron micro-scope. I. A procedure for improving resolution, sensitivity and contrast. J. Cell Biol., Vol. 22, pp. 469–77.CrossRefGoogle Scholar
Souleyet, F. L. A., 1852. Voyage de la Bonité. Zoologie, Vol. 2, p. 486. Paris: Bertrand.Google Scholar
Spicer, S. S., 1960. A correlative study of the histochemical properties of rodent acid mucopolysaccharides. J. Histochem. Cytochem., Vol. 8, pp. 1836.CrossRefGoogle ScholarPubMed
Spicer, S. S. & Lillie, R. D., 1959. Saponification as a means of selectively reversing the methylation blockade of tissue basophilia. J. Histochem. Cytochem., Vol. 7, pp. 123–5.CrossRefGoogle ScholarPubMed
Strain, H. H., 1958. Chloroplast Pigments and Chromatographic Analysis. Thirty-second annual Priestly Lecture, The Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Yonge, C. M., 1926. The digestive diverticula of the Lamellibranchia. Trans. R. Soc. Edinb., Vol. 54, pp. 703–16.CrossRefGoogle Scholar
Yonge, C. M. & Nicholas, H. M., 1940. Structure and function of the gut and symbiosis with zooxanthellae in Tridachia crispata (Oerst.) Bgh. Pap. Tortugas Lab., Vol. 32, pp. 287301.Google Scholar