Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T18:52:52.378Z Has data issue: false hasContentIssue false

Component Fatty Acids of the Total Lipids of Some Marine Phytoplankton

Published online by Cambridge University Press:  11 May 2009

L. Chuecas
Affiliation:
Department of Oceanography, The University of Liverpool, Liverpool 3
J. P. Riley
Affiliation:
Department of Oceanography, The University of Liverpool, Liverpool 3

Extract

A range of 27 marine phytoplankton species, representative of several of the principal classes, has been grown under similar conditions in Erd-Schreiber medium with abundant nutrients. Harvesting was carried out 20 days after inoculation while vigorous growth was proceeding. The component fatty acids of the lipids extractable with chloroform-methanol were determined by gas-liquid chromatography. In all, 40 fatty acids were determined. It is likely that the component fatty-acid distribution may be valuable for taxonomic purposes. Thus, specific fatty-acid assemblages may characterize particular Phyla or even classes. For example, the Bacillariophyceae are differentiated from the other organisms examined by the virtual absence of 18:2, 18:3 and 1814; the Cryptophyta are distinguished by their high content of 20:1. The fatty-acid arrays of species belonging to the same genus are frequently very similar, e.g. Dunaliella primolecta and D. tertiolecta.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackman, R. J., 1962a. Structure and retention time in the gas-liquid chromatography of unsaturated acids on polyester substrates. Nature, Lond., Vol. 194, pp. 970–1.CrossRefGoogle Scholar
Ackman, R. J., 19626. Revision of the end carbon chain concept in the gas-liquid chromatography of methyl esters of unsaturated fatty acids. Nature, Lond., Vol. 195, p. 1198.CrossRefGoogle Scholar
Ackman, R. J., 1963a. Structural correlation of unsaturated fatty acid esters through graphical comparison of gas-liquid chromatographic retention times on a polyester substrate. J. Am. Oil Chem. Soc, Vol. 40, pp. 558–64.CrossRefGoogle Scholar
Ackman, R. J., 1963b. An analysis of separation factors applicable in the gas-liquid chromatography of unsaturated fatty acid methyl esters on a polyester substrate. J. Am. Oil Chem., Vol. 40, pp. 564–7.CrossRefGoogle Scholar
Ackman, R. J. & Burgher, R. D., 1963a. A proposed basis for the systematic identification of unsaturated fatty acid esters through gas-liquid chromatography on polyester substrates. J. Chromat., Vol. 11, pp. 185–94.CrossRefGoogle ScholarPubMed
Ackman, R. J. & Burgher, R. D., 1963b. Component fatty acids of the milk of the grey (Atlantic) seal. Can. J. Biochem. Physiol., Vol. 41, pp. 2501–5.CrossRefGoogle ScholarPubMed
Ackman, R. J. & Burgher, R. D., 1964. Cod liver oil: Component fatty acids as determined by gas-liquid chromatography. J. Fish. Res. Bd Can., Vol. 21, pp. 319–26.CrossRefGoogle Scholar
Ackman, R. J. & Burgher, R. D., 1965. Cod liver oil fatty acids as secondary reference standards in the GLC of polyunsaturated fatty acids of animal origin. Analysis of a dermal oil of the Atlantic leatherback turtle. J. Am. Oil Chem. Soc, Vol. 42, pp. 3842.CrossRefGoogle ScholarPubMed
Ackman, R. J., Jangaard, P. M., Hoyle, R. J. & Brockerhoff, H., 1964. Origin of marine fatty acids. I. Analyses of the fatty acids produced by the diatom Skeletonema costatum. J. Fish. Res. Bd Can., Vol. 21, pp. 747–56.CrossRefGoogle Scholar
Collier, A., 1967. In ‘Estuaries’. (Ed. Lauff, G. F..) Fatty acids in certain plankton organisms. Publs Am. Ass. Advmt Sci., Washington, D.C., No. 83, pp. 353–60.Google Scholar
Erwin, J. & Bloch, K., 1962. The a-linolenic acid content of some photosynthetic micro-organisms. Biochem. biophys. Res. Commun., Vol. 9, pp. 103–8.CrossRefGoogle Scholar
Erwin, J. & Bloch, K., 1963. Polyunsaturated fatty acids in some photosynthetic micro-organisms. Biochem. Z., Bd. 338, pp. 496511.Google Scholar
Erwin, J., Hulanicka, D. & Bloch, K., 1964. Comparative aspects of unsaturated fatty acid synthesis. Comp. Biochem. Physiol., Vol. 12, pp. 191207.CrossRefGoogle ScholarPubMed
Ettre, L. S., 1962. Relative response of the flame ionization detector. J. Chromat., Vol. 8, pp. 525–30.CrossRefGoogle Scholar
Ettre, L. S. & Cabot, F. J., 1963. Relative response of fatty acid methyl esters on the flame ionization detector. J. Chromat., Vol. 11, pp. 114–16.CrossRefGoogle Scholar
Farquhar, J. W., Insull, W. Jr, Rosen, P., Stoffel, W. & Ahrens, E. H. Jr, 1959. The analysis of fatty acid mixtures by gas-liquid chromatography. Nutr. Rev. (Suppl.), Vol. 17, Part 2, pp. 130.Google ScholarPubMed
Gerson, T., Shorland, F. B. & Macintosh, J. E. A., 1964. The determination of methyl esters of polyunsaturated acids by gas-liquid chromatography. Biochem.J., Vol. 91, p. 11.cCrossRefGoogle ScholarPubMed
Gerson, T., Shorland, F. B. & Macintosh, J. E. A., 1966. The loss of methyl esters of polyunsaturated acids during gas chromatography. J. Chromat., Vol. 23, pp. 61–6.CrossRefGoogle Scholar
Giese, A. C., 1967. Some methods for study of the biochemical constitution of marine invertebrates. Oceanogr. Mar. Biol. Ann. Rev., Vol., 5, pp. 159–86.Google Scholar
Haines, T. H., Aaronson, S., Gellerman, J. L. & Schlenk, H., 1962. Occurrence of arachidonic and related acids in the protozoon Ochromonas danica. Nature, Lond., Vol. 194, pp. 1282–3.CrossRefGoogle Scholar
Hendey, N. I., 1954a. A preliminary check-list of British marine diatoms. J. mar. biol. Ass., U.K., Vol. 33, pp. 537–60.CrossRefGoogle Scholar
Hendey, N. I., 1954b. Note on the Plymouth 'Nitzschia' culture. J. mar. biol. Ass. U.K., Vol. 33, pp. 335–9.CrossRefGoogle Scholar
Holton, R. W., Blecker, H. H. & Onore, M., 1964. Effect of growth temperature on the fatty acid composition of a blue-green alga. Phytochemistry, Vol. 3, pp. 595602.CrossRefGoogle Scholar
Hulanicka, D., Erwin, J. & Bloch, K., 1964. Lipid metabolism of Euglena gracilis. J. biol. Chem., Vol. 239, pp. 2778–87.CrossRefGoogle ScholarPubMed
Iwata, I., 1964. Lipid of algae. V. Fatty acids of Chlorella and Scenedesmus. Agric. biol. Chem. (Tokyo), Vol. 28, pp. 610–15.Google Scholar
Kates, M. & Volcani, B. E., 1966. Lipid components of diatoms. Biochim. biophys. Acta, Vol. 116, pp. 264–78.CrossRefGoogle ScholarPubMed
Kayama, M., Tsuchiya, Y. & Mead, J. F., 1963. A model experiment of aquatic food chain with special significance in fatty acid conversion. Bull. Jap. Soc. sclent. Fish., Vol. 29, pp. 452–8.CrossRefGoogle Scholar
Klenk, E. & Eberhagen, D., 1962. Über die ungesättigten C16-Fettsauren des Meeresplanktons und das Vorkommen der A6,9,12,15-Hexadecatetraensäure. Hoppe-Seyler's Z. physiol. Chem., Vol. 328, pp. 189–97.CrossRefGoogle Scholar
Klenk, E. & Knipprath, W., 1959. Über das Vorkommen einer A4,7,10,13. Hexadecatetraensäure in den Fettstoffen der Algenart Scenedesmus obliquus und deren Isolierung. Hoppe-Seyler's Z. physiol. Chem., Vol. 317, pp. 243–7.CrossRefGoogle Scholar
Klenk, E., Knipprath, W., Eberhagen, D. & Koof, H. P., 1963. Über die ungessattigten Fettsauren der Fettstoffe von Siisswasser- und Meeresalgen. HoppeSeyler's Z. physiol. Chem., Vol. 334, pp. 4459.CrossRefGoogle Scholar
Korn, E. D., 1964. The fatty acids of Euglena gracilis. J. Lipid Res., Vol. 5, pp. 352–62.CrossRefGoogle ScholarPubMed
Lambertsen, Q. & Braekkan, O., 1965. The fatty acid composition of cod liver oil. FiskDir. Skr. Serie Teknologiske undersokelser, Vol. 4, No. 11, Bergen, Norway.Google Scholar
Lamonica, J. & Conti, M. P., 1962. Cultura massiva di alghe. Nota II. Acidi grassi dei lipidi di un ceppo di Scenedesmus quadricauda. Biochim. appl., Vol. 11, pp. 151–62.Google Scholar
Lewis, R. W., 1967. Fatty acid composition of some marine animals from various depths. J. Fish. Res. bd Can., Vol. 24, pp. 1101–15.CrossRefGoogle Scholar
Lovern, J. A., 1936. LXII. Fat metabolism in fishes. IX. The fats of some aquatic plants. Biochem. J., Vol. 30, pp. 387–90.CrossRefGoogle Scholar
Milner, H. W., 1948. The Fatty Acids Of Chlorella. J. biol. Chem., Vol. 176, pp. 813–17.CrossRefGoogle ScholarPubMed
Nichols, B. W., Harris, R. V. & James, A. T., 1965. The lipid metabolism of blue-green algae. Biochem. biophys. Res. Commun., Vol. 20, pp. 256–62.CrossRefGoogle ScholarPubMed
Niemerko, W., 1959. Some aspects of lipid metabolism in insects. Biochemistry of insects, Symp. Vol. 12, Fourth Int. Congr. Biochem., pp. 185200. Ed. Levenbook, L. L.. London: Pergamon Press.Google Scholar
Niemerko, W., 1960. The biochemistry of lipids. Folia Morph., Vol. 11, pp. 177–99.Google Scholar
Parke, M. & Dixon, P. S., 1964. A revised check-list of British Marine Algae. J. mar. biol. Ass. U.K., Vol. 44, pp. 499542.CrossRefGoogle Scholar
Parker, P. L., Van Baalen, C. & Maurer, L., 1967. Fatty acids in eleven species of blue-green algae: geochemical significance. Science, N.Y., Vol. 155, pp. 707–8.CrossRefGoogle ScholarPubMed
Patton, S., Fuller, G., Loeblich, III, A. R. & Benson, A. A., 1966. Fatty acids of the ‘red tide’ organism, ‘Gonyaulax polyedra’. Biochim. biophys. Ada, Vol. 116, PP. 577–9.CrossRefGoogle ScholarPubMed
Riley, J. P. & Wilson, T. R. S., 1967. The pigments of some marine phytoplankton species. J. mar. biol. Ass. U.K., Vol. 47, pp. 351–62.CrossRefGoogle Scholar
Rosenberg, A., 1963. A comparison of lipid patterns in photosynthesizing and nonphotosynthesizing cells of Euglena gracilis. Biochemistry, Vol. 2, pp. 1148–54.CrossRefGoogle ScholarPubMed
Rosenberg, A. & Pecker, M., 1964. Lipid alterations in Euglena gracilis cells during light-induced greening. Biochemistry. Vol. 3, pp. 254–8.CrossRefGoogle ScholarPubMed
Rosenberg, A., Pecker, M. & Moschides, E., 1965. Fatty acids in the pellicles and plastids of light-grown and dark-grown cells of Euglena gracilis. Biochemistry, Vol. 4, pp. 680–5.CrossRefGoogle ScholarPubMed
Round, F. E., 1965. The Biology of the Algae. 296 pp. London: Arnold.Google Scholar
Scheuerbrandt, G. & Bloch, K., 1962. Unsaturated fatty acids in micro-organisms. J. biol. Chem., Vol. 237, pp. 2064–8.CrossRefGoogle Scholar
Schlenk, H. & Gellerman, J. L., 1960. Esterification of fatty acids with diazomethane on a small scale. Analyt. Chem., Vol. 32, pp. 1412–14.CrossRefGoogle Scholar
Schlenk, H., Mangold, H. K., Gellerman, J. L., Link, W. E., Morrissette, R. A., Holman, R. T. & Hayes, H., 1960. Comparative analytical studies of fatty acids of the alga Chlorella pyrenoidosa. J. Am. Oil. Chem. Soc, Vol. 37, pp. 547–52.CrossRefGoogle Scholar
Stoffel, W., Chu, F. & Ahrens, E. H. Jr, 1959. Analysis of long-chain fatty acids by gas-liquid chromatography. Micromethod for preparation of methyl esters. Analyt. Chem., Vol. 31, pp. 307–8.CrossRefGoogle Scholar
Vorbeck, M. L., Mattick, L. R., Lee, F. A. & Pederson, C. S., 1961. Preparation of methyl esters of fatty acids for gas-liquid chromatography. Analyt. Chem., Vol. 33, pp. 1512–14.CrossRefGoogle Scholar
Williams, P. M., 1965. Fatty acids derived from lipids of marine origin. J. Fish. Res. Bd Can., Vol. 22, pp. 1107–22.CrossRefGoogle Scholar
Williams, R. V. & Mcmillan, R., 1961. Lipids of Ankistrodesmus braunii. Science, N.Y., Vol. 133, pp. 459–60.CrossRefGoogle ScholarPubMed