Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-20T17:56:33.403Z Has data issue: false hasContentIssue false

The co-ordination of the rhythmical fin movements of dogfish

Published online by Cambridge University Press:  11 May 2009

B. L. Roberts
Affiliation:
Department of Zoology, University of Cambridgecor1corresp
*

Extract

The muscle fibres of the radial muscles of the unpaired fins of dogfish can be divided into two populations—an outer group of red muscle fibres which are smaller and fewer than the inner white muscle fibres and which differ in structure, number of nuclei and pattern of innervation. Two types of potential were detected in the two muscle systems when recordings were made with implanted electrodes during movements of the fins. The red muscle fibres were associated with small, slow junctional potentials which changed in amplitude when the activity of the system was altered.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, E. D. & Bronk, D. W., 1929. The discharges of impulses in motor nerve fibres. J. Physiol., Lond., Vol. 67, pp. 119–51.CrossRefGoogle ScholarPubMed
Bangert, H., 1960. Untersuchungen zur Koordination der Kopfund Beinbewegungen beim Hauchuhn. Z. TierpsychoL, Bd 17, pp. 143–64.Google Scholar
Barets, A., 1956. Les récepteurs intra-musculaires des nageoires chez les selaciens. Arch. Anat. microsc. Morph. exp., T. 45, pp. 254–60.Google Scholar
Barets, A., 1961. Contribution a 1'étude des systems moteurs ‘lent’ et ‘rapide’ des muscle lateral des teleosteens. Arch. Anat. microsc. Morph. exp., T. 50, pp. 192.Google Scholar
Bergman, R. A., 1964. Mechanical properties of the dorsal fin musculature of the marine teleost, Hippocampus hudsonius. Bull. Johns Hopkins Hosp., Vol. 114, pp. 344–53.Google ScholarPubMed
Bone, Q., 1964. Patterns of muscular innervation in the lower chordates. Int. Rev. Neurobiol., Vol. 6, pp. 99147.CrossRefGoogle ScholarPubMed
Bone, Q., 1966. On the function of the two types of myotomal muscle fibre in elasmo-branch fish. J. mar. biol. Ass. U.K., Vol. 46, pp. 321–49.CrossRefGoogle Scholar
Braus, M., 1909. Experimentelle Untersuchungen iiber die Segmentalstruktur der motorischen Nervenplexus. Anat. Anz., Bd 34, pp. 529–51.Google Scholar
Cate, J. Ten, 1933. Zur Innervation der Fortbewegung der Haifische. Archs ne'erl. Physiol., Bd 18, pp. 497502.Google Scholar
Chambers, R. M. & Simcock, J. P., 1960. Postural reflexes in forelimb of toad, Bufo marinus, J. Neurophysiol., Vol. 23, pp. 5461.CrossRefGoogle ScholarPubMed
Fessard, A. & Sand, A., 1937. Stretch receptors in the muscles of fishes. J. exp. Biol. Vol. 14, pp. 383404.CrossRefGoogle Scholar
Gauthier, G. F. & Padykula, H. A., 1966. Cytological studies of fibre types in skeletal muscle. J. Cell Set., Vol. 28, pp. 333–54.CrossRefGoogle ScholarPubMed
Goodrich, E. S., 1904. On the dermal fin rays of fishes—living and extinct. Q. Jl microsc. Sci., Vol. 47, pp. 465522.Google Scholar
Goodrich, E. S., 1906. Notes on the development, structure and origin of the median and paired fins of fish. Q. Jl microsc. Sci., Vol. 50, pp. 333–82.Google Scholar
Goodrich, E. S., 1910. On the segmental structure of the motor nerve plexus. Anat. Anz., Bd 36, pp. 109–12.Google Scholar
Gray, J., 1933a. Studies in animal locomotion. I. The movement offish with special reference to the eel. J. exp. Bioh, Vol. 10, pp. 88104.CrossRefGoogle Scholar
Gray, J., 1933b. Studies in animal locomotion. II. The relationship between waves of muscular contraction and the propulsive mechanism of the eel. J. exp. Biol., Vol. 10, pp. 386–90.CrossRefGoogle Scholar
Gray, J., 1933c. Studies in animal locomotion. III. The propulsive mechanism of the whiting (Gadus merlangus). J. exp. Biol., Vol. 10, pp. 390400.Google Scholar
Gray, J., 1953. Undulatory propulsion. Q. Jl microsc. Sci., Vol. 94, pp. 551–78.Google Scholar
Gray, J., 1968. Animal Locomotion. London: Weidenfield & Nicholson.Google Scholar
Gray, J. & Sand, A., 1936b. The locomotory rhythm of the dogfish (Scyllium canicula). J. exp. Biol., Vol. 13, pp. 200–9.CrossRefGoogle Scholar
Gray, J. & Sand, A., 1936b. Spinal reflexes of the dogfish (Scyllium caniculd). J. exp. Biol., Vol. 13, pp. 210–18.CrossRefGoogle Scholar
Grundfest, H. & Purpura, D. P., 1959. Modes of action of curare and other synapse inactivators in the central nervous system. In:Curare and Curare-like agents. Ed. Bovet, D.et al., pp. 390–4. Amsterdam: Elsevier.Google Scholar
Gunkel, M., 1962. Uber relative Koordination bei willkürlichen menschlichen Gliedbewegungen. Pflügers Arch. ges. Physiol., Bd 275, pp. 472–7.CrossRefGoogle Scholar
Hagiwara, C., 1961. Nervous activities of the heart in Crustacea. Ergebn. Biol., Vol. 24, pp. 287311.CrossRefGoogle ScholarPubMed
Hess, A., 1961. Structural differences of fast and slow extrafusal mucle fibres and their nerve endings in chickens. J. Physiol., Lond., Vol. 157, pp. 221–31.Google Scholar
Holst, E. Von, 1935a. Über den Prozess der zentralnervosen Koordination. Pfliigers Arch. ges. Physiol., Bd 236, pp. 149–58.CrossRefGoogle Scholar
Holst, E. Von, 1935b. Alles oder Nichts Block, Alternans, Bigemini und verwandte Phanomene als Eigenschaften des Ruckenmarks. Pflügers Arch. ges. Physiol., Bd 236, pp. 5I5–32.CrossRefGoogle Scholar
Holst, E. Von, 1936a. Versuche zur Theorie der relativen Koordination. Pflügers Arch. ges. Physiol., Bd 237, pp. 93121.CrossRefGoogle Scholar
Holst, E. Von, 1936b. Vom Dualismus der motorischen und der automatischrhythmischen Funktion im Ruckenmark und vom Wesen des automatischen Rhythmus. Pflügers Arch. ges. Physiol., Bd 237, pp. 356–78.CrossRefGoogle Scholar
Holst, E. Von, 1936c. Uber den ‘ Magnet-EfFekt’ als koordinierendes Prinzip im Ruckenmark. Pfliigers Arch. ges. Physiol., Bd 237, pp. 655–82.CrossRefGoogle Scholar
Holst, E. Von, 1939. Die relative Koordination als Phanomen und als Methode zentralnervoser Funktionsanalyse. Ergebn. Physiol., Bd 42, pp. 228306.CrossRefGoogle Scholar
Katz, B. & Miledi, R., 1965. Propagation of electric activity in motor nerve terminals. Proc. R. Soc. B, Vol. 161, 453–82.Google ScholarPubMed
Kruger, P., 1952. Tetanus und Tonus der quergesteiften Skelettmuskeln der Wirbeltiere und des Menschen. Leipzig.Google Scholar
Kuffler, S. W. & Vaughan, Williams E. M., 1953. Small-nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle and the membrane characteristics of the fibres they innervate. J. Physiol., Lond., Vol. 121, pp. 289317.Google Scholar
Le Mare, D. W., 1936. Reflex and rhythmical movements in the dogfish. J. exp. Biol., Vol. 13, pp. 429–42. 24–2Google Scholar
Lissmann, H. W., 1946a. The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthias vulgaris). I. Reflex behaviour. J. exp. BioL, Vol. 23, pp. 143–61.Google Scholar
Lissmann, H. W., 1946b. The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthias vulgaris). II. The effect of deafferentation. J. exp. BioL, Vol. 23, pp. 162–76.CrossRefGoogle Scholar
Lowenstein, O., 1932. Experimentelle Untersuchungen uber den Gleichgewichtssinn der Elritze (Phoxinus laevis L.). Z. vergl. Physiol., Bd 17, pp, 806–54.CrossRefGoogle Scholar
Lowenstein, O., 1956. Pressure receptors in the fins of the dogfish, Scyliorhinus canicula. J. exp. BioL, Vol. 33, pp. 417–21.Google Scholar
Miledi, R. & Orkand, P., 1966. Effect of ‘fast’ nerve on ‘slow’ muscle fibres in the frog. Nature, Lond., Vol. 209, pp. 717–18.Google Scholar
Murray, P. D. F., 1924. The motor nerve-endings of the limb muscles of the frog (Rana temporaria) and of the muscles of the pectoral fins of the dogfish (Squalus acanthias). Proc. Linn. Soc. N.S.W., Vol. 49, pp. 371–85.Google Scholar
Orkand, R. K., 1963. A further study of electrical responses in slow and twitch muscle fibres of the frog. J. Physiol., Lond., Vol. 167, pp. 181–91.Google Scholar
Perkel, D. H., Schulman, J. H., Bullock, T. H., Moore, G. P. & Segundo, J. P., 1964. Pacemaker neurons: effects of regularly spaced input. Science, N.Y., Vol. 145, pp. 61–3.Google Scholar
Poloumordwinoff, D., 1898. Recherches sur les terminaisons nerveuses sensitives dans les muscles stries volontaires. Trav. Soc. Sci. Arcachon, T. 3, pp. 73–9.Google Scholar
Purvis, G. C., 1890. Note on certain terminal organs resembling touch corpuscles or end-bulbs in intramuscular connective tissue of the skate. Q. Jl microsc. Sci., Vol. 30, pp. 515–18.Google Scholar
Rayner, M. D. & Keenan, M. J., 1967. Role of red and white muscles in swimming of the skipjack tuna. Nature, Lond., Vol. 214, pp. 392–3.Google Scholar
Roberts, B. L., 1969a. Spontaneous rhythms in the motoneurons of spinal dogfish (Scyliorhinus canicula). J. mar. biol. Ass. U.K., Vol 49, pp. 3349.CrossRefGoogle Scholar
Roberts, B. L., 1969b. The spinal nerves of the dogfish, Scyliorhinus. J. mar. BioL Ass. U.K., Vol. 49, pp. 5175.Google Scholar
Roberts, B. L., 1969c. A locomotory proprioceptor in fishes. (In preparation.)Google Scholar
Roberts, B. L., 1969c. Rhythmical movements of the unpaired fins of dogfish. (In preparation.)Google Scholar
Weis, Fogh T., 1964. Control of basic movements in flying insects. Symp. Soc. exp. BioL, Vol. 18, pp. 343–63.Google Scholar
Wendler, G., 1966. The co-ordination of walking movements in arthropods. Symp. Soc. exp. BioL, Vol. 20, pp. 229–49.Google Scholar
Wilson, D. M., 1966. Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. Symp. Soc. exp. BioL, Vol. 20, pp. 199228.Google ScholarPubMed
Wunderer, H., 1908. Uber Terminalkorperchen der Anamnien. Arch, mikrosk. Anat., Bd 71, pp. 504–69.Google Scholar