Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T23:26:38.699Z Has data issue: false hasContentIssue false

Diversity of marine ascomycetes from the disturbed sandy beaches of Tabasco, Mexico

Published online by Cambridge University Press:  14 January 2015

Patricia Velez*
Affiliation:
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, DF 04510, México
María C. González
Affiliation:
Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, DF 04510, México
Silvia Capello-García
Affiliation:
División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
Edmundo Rosique-Gil
Affiliation:
División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México
Richard T. Hanlin
Affiliation:
Museum of Natural History Annex, University of Georgia, Bogart, GA 30622, USA
*
Correspondence should be addressed to: P. Velez, Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, DF 04510, México email: pvelezaguilar@gmail.com

Abstract

The coastline of Tabasco State in the Gulf of Mexico represents a highly deteriorated ecosystem, where densely populated human settlements and large offshore petroleum developments are negatively affecting the marine biodiversity. Previous work on marine ascomycetes reported that in the Gulf of Mexico the diversity of these fungi might be threatened by anthropogenic activities. Therefore we evaluated the diversity of marine ascomycetes in this area, and registered 19 taxa. Ceriosporopsis capillacea was recorded for the first time for Mexico. The highest diversity was obtained in the beach of Sánchez Magallanes, which receives a great quantity and diversity of organic remains originating from El Carmen/Machona mangrove forests via the Santa Ana mouth, benefiting the proliferation of marine fungi. The lowest diversity was documented in the beach of Paraíso, which is close to the delta of one of the most polluted rivers in Mexico and to off-shore oil extraction platforms. We found a significant correlation between the community composition and abundance, implying that the overall abundance is defined by the community structure, perhaps as a result of competition. Additionally, our results indicated that there is no relationship between the grain size and the biodiversity observed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel-Wahab, M.A., Nagahama, T. and Abdel-Aziz, F.A. (2009) Two new Corollospora species and one new anamorph based on morphological and molecular data. Mycoscience 50, 147155.CrossRefGoogle Scholar
Barghoorn, E.S. and Linder, D.H. (1944) Marine fungi: their taxonomy and biology. Farlowia 1, 395467.Google Scholar
Botello, A.V., Gofii, J.A. and Castro, S.A. (1983) Levels of organic pollution in coastal lagoons of Tabasco State, Mexico; I: petroleum hydrocarbons. Bulletin of Environmental Contamination and Toxicology 31, 271277.CrossRefGoogle ScholarPubMed
Botello, A.V., Gonzalez, C. and Diaz, G. (1991) Pollution by petroleum hydrocarbons in sediments from Continental Shelf of Tabasco State, Mexico. Bulletin of Environmental Contamination and Toxicology 47, 565571.CrossRefGoogle ScholarPubMed
Carranza-Edwards, A. (2001) Grain size and sorting in modern beach sands. Journal of Coastal Research 17, 3852.Google Scholar
Culp, J.M., Walde, S.J. and Davies, R.W. (1983) Relative importance of substrate particle size and detritus to stream benthic macroinvertebrate microdistribution. Canadian Journal of Fisheries and Aquatic Sciences 40, 15681574.CrossRefGoogle Scholar
Day, J.W., Yáñez-Arancibia, A., Mitsch, W.J., Lara-Domínguez, A.L., Day, J.N., Jae-Young, K., Lane, R., Lindsey, J. and Zárate-Lomelí, D. (2003) Using ecotechnology to address water quality and wetland habitat loss problems in the Mississippi basin (and Grijalva/Usumacinta basin): a hierarchical approach. Biotechnology Advance 22, 135159.CrossRefGoogle Scholar
Dray, S. and Dufour, A.B. (2007) The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22, 120.CrossRefGoogle Scholar
González, M.C. (2009) Free living, saprobic, filamentous fungi of the Gulf of Mexico. In Felder, D.L. and Camp, D.K. (eds) Gulf of Mexico origin, waters, and biota. Austin, TX: A&M University Press, pp. 8186.Google Scholar
González, M.C. and Hanlin, R.T. (2010) Potential use of marine arenicolous ascomycetes as bioindicators of ecosystem disturbance on sandy Cancun beaches: Corollospora maritima as a candidate species. Botanica Marina 53, 577580.CrossRefGoogle Scholar
González, M.C., Hanlin, R.T., Herrera, T. and Ulloa, M. (2000) Fungi colonizing hair baits from three coastal beaches of Mexico. Mycoscience 41, 259262.CrossRefGoogle Scholar
González, M.C., Hanlin, R.T. and Ulloa, M. (2001) A checklist of higher marine fungi of Mexico. Mycotaxon 80, 241253.Google Scholar
González, M.C. and Herrera, T. (1993) Micromicetes endopsamófilos de Barra de Navidad, Jalisco, Mexico. Revista Mexicana de Micología 9, 1933.Google Scholar
González, M.C., Herrera, T., Ulloa, M. and Hanlin, R.T. (1998) Abundance and diversity of microfungi in three coastal beaches of Mexico. Mycoscience 39, 115121.CrossRefGoogle Scholar
Harrell, F.E. Jr, Dupont, C., et al. (2014) Hmisc: Harrell Miscellaneous. R package version 3.14–4; available at: http://CRAN.R-project.org/package=Hmisc (accessed 11 April 2014).Google Scholar
Hendrickx, J. (2012) perturb: Tools for evaluating collinearity. R package version 2.05; available at: http://CRAN.R-project.org/package=perturb (accessed 11 April 2014).Google Scholar
Hijmans, R.J. and van Etten, J. (2013) raster: Geographic data analysis and modeling. R package version 2.1–16; available at: http://CRAN.R-project.org/package=raster (accessed 11 April 2014).Google Scholar
Hurley, C. (2012) gclus: Clustering Graphics. R package version 1.3.1; available at: http://CRAN.R-project.org/package=gclus (accessed 11 April 2014).Google Scholar
Husson, F., Josse, J., Le, S. and Mazet, J. (2013) FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R package version 1.24; available at: http://CRAN.R-project.org/package=FactoMineR (accessed 11 April 2014).Google Scholar
Hyde, K.D. and Sarma, V.V. (2000) Pictorial key to higher marine fungi. In Hyde, K.D. and Pointing, S.B. (eds) Marine mycology – a practical approach. Hong Kong: Fungal Diversity Press, pp. 205270.Google Scholar
Jones, E.B.G. (1993) Tropical marine fungi. In Isaac, S., Frankland, J.C., Watling, R. and Walley, A.J.S. (eds) Aspects of tropical mycology. New York, NY: Cambridge University Press, pp. 7389.Google Scholar
Jones, E.B.G. (2000) Marine fungi. Some factors influencing biodiversity. Fungal Diversity 4, 5373.Google Scholar
Jones, E.B.G., Johnson, R.G. and Moss, S.T. (1983) Taxonomic studies of the Halosphaeriaceae: Corollospora Werdmann. Botanical Journal of the Linnean Society 87, 193212.CrossRefGoogle Scholar
Jones, E.B.G. and Pang, K. (2012) Tropical aquatic fungi. Biodiversity and Conservation 21, 24032423.CrossRefGoogle Scholar
Jones, E.B.G., Sakayaroj, J., Suetrong, S., Somrithipol, S. and Pang, K.L. (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35, 1187.Google Scholar
Kerr, T.K., Sugar, A. and Packer, L. (2000) Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conservation Biology 16, 17261734.CrossRefGoogle Scholar
Kirk, P.W., Dyer, B.J. and Noe, J. (1991) Hydrocarbon utilization by higher marine fungi from diverse habitats and localities. Mycologia 83, 227230.CrossRefGoogle Scholar
Kirk, P.W. and Gordon, A.S. (1988) Hydrocarbon degradation by filamentous marine higher fungi. Mycologia 80, 776782.CrossRefGoogle Scholar
Koch, J. (1986) Some lignicolous marine fungi from Thailand, including two new species. Nordic Journal of Botany 6, 497499.CrossRefGoogle Scholar
Kohlmeyer, J. (1960) Wood-inhabiting marine fungi from the Pacific Northwest and California. Nova Hedwigia 2, 293343.Google Scholar
Kohlmeyer, J. (1962) Corollospora maritima Werderm.: Ein Ascomycet. Berichte der Deutschen Botanischen Gesellschaft 75, 125127.Google Scholar
Kohlmeyer, J. (1963) Fungi marini novi vel critici. Nova Hedwigia 6, 297329.Google Scholar
Kohlmeyer, J. (1968a) Danish marine fungi Danische merespilze. Berichte der Deutschen Botanischen Gesellschaft 81, 5361.CrossRefGoogle Scholar
Kohlmeyer, J. (1968b) Marine fungi from the tropics. Mycologia 60, 252270.CrossRefGoogle Scholar
Kohlmeyer, J. (1981) Marine fungi from Martinique. Canadian Journal of Botany 59, 13141321.CrossRefGoogle Scholar
Kohlmeyer, J. and Kohlmeyer, E. (1979) Marine mycology. The higher fungi. New York, NY: Academic Press.Google Scholar
Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1987) Reflections on the genus Corollospora (Ascomycetes). Transactions of the British Mycological Society 88, 181188.CrossRefGoogle Scholar
Kohlmeyer, J., Spatafora, J.A. and Volkmann-Kohlmeyer, B. (2000) Lulworthiales, a new order of marine Ascomycota. Mycologia 92, 453458.CrossRefGoogle Scholar
Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1989) Corollospora armoricana sp. nov. an arenicolous ascomycete from Brittany (France). Canadian Journal of Botany 67, 12811284.CrossRefGoogle Scholar
Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1991) Illustrated key to the filamentous higher marine fungi. Botanica Marina 34, 161.CrossRefGoogle Scholar
Kohlmeyer, J. and Volkmann-Kohlmeyer, B. (1997) A new Corollospora from Californian beaches. Botanica Marina 40, 225228.CrossRefGoogle Scholar
Laliberté, E. and Shipley, B. (2011) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–1; available at: http://cran.r-project.org/web/packages/FD/index.html (accessed 11 April 2014).Google Scholar
Liberra, K., Jansen, R. and Lindequist, U. (1998) Corollosporine, a new phthalide derivative from the marine fungus Corollospora maritima Werderm. 1069. Pharmazie 53, 578581.Google ScholarPubMed
Magurran, A.E. (2004) Measuring ecological diversity. Oxford: Blackwell Publishing.Google Scholar
Merino, M. (1987) The coastal zone of Mexico. Coastal Management 15, 2742.CrossRefGoogle Scholar
Miller, J.D. (2000) Screening for secondary metabolites. In Hyde, K.D. and Pointing, S.B. (eds) Marine mycology: a practical approach. Fungal diversity research series 1. Hong Kong: Fungal Diversity Press, pp. 158171.Google Scholar
Nakagiri, A. and Tokura, R. (1987) Taxonomic studies of the genus Corollospora (Halosphaeriaceae, Ascomycotina) with descriptions of seven new species. Transactions of the Mycological Society of Japan 28, 413436.Google Scholar
Nambiar, G.R. and Raveendran, K. (2010) Frequency and abundance of arenicolous marine fungi along south Indian beaches. Journal of Scientific Research 2, 138143.CrossRefGoogle Scholar
Newell, S.Y. and Porter, D. (2000) Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In Weinstein, M.P. and Kreeger, D.A. (eds) Concepts and controversies in tidal marsh ecology. Dordrecht: Kluwer, pp. 159185.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. (2013) Vegan: community ecology package. R package version 2.0–7; available at: http://CRAN.R-project.org/ (accessed 11 April 2014).Google Scholar
Panebianco, C., Tam, W.Y. and Jones, E.B.G. (2002) The effect of pre-inoculation of balsa wood by selected marine fungi and their effect on subsequent colonisation in the sea. Fungal Diversity 10, 7788.Google Scholar
Pang, K. and Jheng, J. (2012) A checklist of marine fungi of Taiwan with a description of Kitesporella keelungensis gen. et sp. nov. Botanica Marina 55, 459466.CrossRefGoogle Scholar
Paradis, E., Claude, J. and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289290.CrossRefGoogle ScholarPubMed
Petróleos Mexicanos (2009) Anuario estadístico PEMEX 2009. Avilable at: http://www.ri.pemex.com/files/content/1_AE_COMPLETO.pdf (accessed 31 November 2013).Google Scholar
Petróleos Mexicanos (2013) http://www.pemex.com/ (accessed 10 June 2014).Google Scholar
Ponce-Vélez, G., Vázquez-Botello, A., Díaz-González, G. and García-Ruelas, C. (2012) Persistent organic pollutants in sediment cores of Laguna El Yucateco, Tabasco, Southeastern Gulf of Mexico. Hidrobiológica 22, 161173.Google Scholar
R Development Core Team (2012) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Rabalais, N.N., Turner, R.E. and Wiseman, W.J. Jr (2002) Gulf of Mexico Hypoxia, a.k.a. “The Dead Zone”. Annual Review of Ecology and Systematics 33, 235263.CrossRefGoogle Scholar
Rivera-Arriaga, E., and Villalobos, G. (2001) The coast of Mexico: approaches for its management. Ocean and Coastal Management 44, 729756.CrossRefGoogle Scholar
Rosas, I., Yela, A. and Báez, A. (1985) Bacterias indicadoras de contaminación fecal en ostion (Crassostrea virginica) durante su desarrollo y procesamiento en el mercado. Revista Internacional de Contaminación Ambiental 1, 5164.Google Scholar
Rosique-Gil, E., González, M.C. and Cifuentes, J. (2008) New records of three freshwater ascomycetes from an urban lagoon of Tabasco, Mexico. Mycotaxon 105, 249256.Google Scholar
Strongman, D.B., Calhour, L., Miller, J.A., Miller, J.D. and Whitney, N.J. (1987) The biochemical basis of interference competition among some lignicolous marine fungi. Botanica Marina 30, 2126.CrossRefGoogle Scholar
Sundari, R., Vikineswary, S., Yusoff, M. and Jones, E.B.G. (1996) Corollospora besarispora, a new arenicolous marine fungus for Malaysia. Mycological Research 100, 12591262.CrossRefGoogle Scholar
Tobler, W.R. (1970) A computer movie simulating urban growth in the Detroit region. Economic Geography 46, 234240.CrossRefGoogle Scholar
Tubaki, K. (1966) Marine fungi from Japan. Lignicolous I. Transactions of the Mycological Society of Japan 7, 7387.Google Scholar
Tubaki, K. (1968) Studies on the Japanese marine fungi. Lignicolous group II. Publications of the Seto Marine Biological Laboratory 15, 357372.CrossRefGoogle Scholar
Velez, P., González, M.C., Rosique-Gil, E., Cifuentes, J., Reyes-Montes, M., Capello-García, S. and Hanlin, R.T. (2013) Community structure and diversity of marine ascomycetes from coastal beaches of the southern Gulf of Mexico. Fungal Ecology 6, 513521.CrossRefGoogle Scholar
Velez, P., González, M.C., Cifuentes, J., Rosique-Gil, E. and Hanlin, R.T. (in press) Diversity of sand inhabiting marine ascomycetes in some tourist beaches on Cozumel Island, Mexico. Mycoscience. doi: 10.1016/j.myc.2014.04.007.CrossRefGoogle Scholar
Volkmann-Kohlmeyer, B. and Kohlmeyer, J. (1993) Biogeographic observations on Pacific marine fungi. Mycologia 85, 337346.CrossRefGoogle Scholar
Yáñez-Arancibia, A. and Day, J.W. (2004) Environmental sub-regions in the Gulf of Mexico coastal zone: the ecosystem approach as an integrated management tool. Ocean and Coastal Management 47, 727757.CrossRefGoogle Scholar
Yáñez-Arancibia, A., Ramírez-Gordillo, J.J., Day, J.W. and Yoskowitz, D. (2009) Environmental sustainability of economic trends in the Gulf of Mexico: what is the limit for Mexican coastal development? In Cato, J. (ed) Gulf of Mexico origin, waters, and biota. Austin, TX: Texas A&M University Press, pp. 82104.Google Scholar