Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T06:00:32.908Z Has data issue: false hasContentIssue false

Estimation of natural mortality in two demersal squat lobster species off Chile

Published online by Cambridge University Press:  09 September 2019

T. Mariella Canales*
Affiliation:
Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile Departamento de Ecología, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, Santiago, Chile
Rodrigo Wiff
Affiliation:
Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile Departamento de Ecología, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins #340, Santiago, Chile
Juan Carlos Quiroz
Affiliation:
Departamento de Evaluación de Recursos, Instituto de Fomento Pesquero, Blanco #839, Valparaíso, Chile
Dante Queirolo
Affiliation:
Escuela de Ciencias del Mar, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso (PUCV), Avenida Altamirano #1480, Valparaíso, Chile
*
Author for correspondence: T. Mariella Canales, E-mail: mariella.canales@gmail.com

Abstract

Natural mortality (M) is a key parameter for understanding population dynamics, especially in relation to harvested populations. Direct observations of M in crustaceans are scarce, due to the moulting process. Indirect methods to estimate M with easier-to-obtain life history attributes are therefore used routinely. Given their theoretical background, we reviewed the applicability of these methods for crustaceans. We applied the selected methods to two crustacean species harvested in Chilean waters: the yellow squat lobster (Cervimunida johni) and red squat lobster (Pleuroncodes monodon). Uncertainty of each M estimate was incorporated in the life history parameters that input into the indirect method (trait-error) and parameters defining the indirect method (coefficient-trait-error). Methods based on the relationship between total mortality and maximum age, or with different ages and based on life history theory were the most appropriate for crustaceans since they apply across taxa. M estimates showed high variability between species, sexes and areas. Estimations of M for C. johni varied from 0.13 to 0.28 (year−1) for males and 0.17 to 0.51 (year−1) for females. For P. monodon values for the north varied from 0.26 to 0.37 (year−1) for males and 0.24 to 0.45 (year−1) for females. In the south, values of M were higher for both males (0.43–0.68 year−1) and females (0.41–1.06 year−1). High variability in the M estimates was associated with the method and number of parameters, their uncertainty, theoretical background and probability distribution. M estimates are not comparable, raising the need to propagate the uncertainty of M into the stock assessment of Chilean squat lobsters.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuña, E, Arancibia, H, Mujica, L and Roa, R (1996) Análisis de la pesquería y evaluación indirecta del stock de langostino amarillo en la III y IV Regiones. Fondo the Investigación Pesquera (FIP) 96-08, 153 pp.Google Scholar
Alagaraja, K (1984) Simple methods for estimation of parameters for assessing exploited fish stocks. Indian Journal of Fisheries 31, 177208.Google Scholar
Alverson, DL and Carney, MJ (1975) A graphic review of the growth and decay of population cohorts. ICES Journal of Marine Science 36, 133143.Google Scholar
Andersen, K, Farnsworth, F, Pedersen, M, Gislason, H and Beyer, J (2009) How community ecology links natural mortality, growth, and production of fish populations. ICES Journal of Marine Science 66, 19781984.Google Scholar
Arana, P, Melo, T, Noziglia, L, Sepúlveda, JI, Silva, N, Yany, G and Yáñez, E (1975) Los recursos demersales de la Región de Valparaíso, Chile. Comisión Permanente del Pacífico Sur 3, 3961.Google Scholar
Arancibia, H, Cubillos, L and Acuña, E (2005) Crecimiento y composición de edad anual del Langostino Amarillo (Cervimunida johni) de la zona norte centro de Chile (1996–97). Scientia Marina 69, 113122.Google Scholar
Bayliff, WH (1967) Growth, mortality, and exploitation of the Engraulidae, with special reference to the anchoveta, Cetengraulis mysticetus, and the Colorado, Anchoa naso, in the eastern Pacific Ocean. Bulletin of the Inter-American Tropical Tuna Commission 12, 367408.Google Scholar
Beverton, RJH (1963) Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing. Rapports et Proces-Verbaux des Réunions du Conseil Permanent International pour l'exploration de la Mer 154, 4467.Google Scholar
Beverton, RJH and Holt, SJ (1959). A review of the lifespans and mortality rates of fish in nature, and their relation to growth and other physiological characteristics. In Wolstenholme, GEW and O'Connor, M (eds), The Lifespan of Animals. London: Churchill, pp. 142180.Google Scholar
Beverton, RJH, Hylen, A, Østvedt, O-J, Alvsvaag, J and Iles, TC (2004) Growth, maturation, and longevity of maturation cohorts of Norwegian spring-spawning herring. ICES Journal of Marine Science 61, 165175.Google Scholar
Brodziak, J, Ianelli, J, Lorenzen, K and Methot, RD (2011) Estimating Natural Mortality in Stock Assessment Applications. U.S. Department of Commerce NOAA Technical Memo NMFS-F/SPO-119, 38 pp.Google Scholar
Brown, J, Gillooly, J, Allen, A, Savage, V and West, G (2004) Toward a metabolic theory of ecology. Ecology 85, 17711789.Google Scholar
Bucarey, D (2015 a) Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2016. Langostino Amarillo, 2016. Subsecretaria de Economía y Empresas de Menor Tamaño - Instituto de Fomento Pesquero (Informe Consolidado), 93 pp.Google Scholar
Bucarey, D (2015 b) Estatus y posibilidades de explotación biológicamente sustentables de los principales recursos pesqueros nacionales al año 2016. Langostino Colorado, 2016. Subsecretaria de Economía y Empresas de Menor Tamaño – Instituto de Fomento Pesquero (Informe Consolidado), 82 pp.Google Scholar
Charnov, EL (1979) Natural selection and sex change in Pandalid shrimp: test of a life theory. American Naturalist 113, 715734.Google Scholar
Charnov, EL (1989) Natural selection on age of maturity in shrimp. Evolutionary Ecology 3, 236239.Google Scholar
Charnov, E and Berrigan, D (1991) Dimensionless numbers and the assembly rules for life histories. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 332, 4148.Google Scholar
Charnov, EL and Gillooly, JF (2004) Size and temperature in the evolution of fish life histories. Integrative and Comparative Biology 44, 494497.Google Scholar
Charnov, EL, Gislason, H and Pope, JG (2012) Evolutionary assembly rules for fish life histories. Fish and Fisheries 14, 213224.Google Scholar
Cubillos, L (2003) An approach to estimate the natural mortality rate in fish stocks. Naga, World Fish Center Quarterly 26, 1719.Google Scholar
Frisk, MG, Miller, TJ and Fogarty, MJ (2001) Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study. Canadian Journal of Fisheries and Aquatic Sciences 58, 969981.Google Scholar
Frusher, SD and Hoenig, JM (2001) Estimating natural and fishing mortality and tag reporting rate of southern rock lobster (Jasus edwardsii) from a multiyear tagging model. Canadian Journal of Fisheries and Aquatic Sciences 58, 24902501.Google Scholar
Fu, CH and Quinn, TJ (2000) Estimability of natural mortality and other population parameters in a length-based model: Pandalus borealis in Kachemak Bay, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 57, 24202432.Google Scholar
Gaichas, SK, Aydin, KY and Francis, RC (2010) Using food web models results to inform stock assessment estimates of mortality and proportion for ecosystem-based fisheries management. Canadian Journal of Fisheries and Aquatic Sciences 67, 14901506.Google Scholar
Gislason, H, Niels, D, Rice, JC and Pope, J (2010) Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries 11, 149158.Google Scholar
Gonzalez, MT and Acuña, E (2004) Infestation by Pseudione humboldtensis (Bopyridae) in the squat lobsters Cervimunida johni and Pleuroncodes monodon (Galatheidae) off northern Chile. Journal of Crustacean Biology 24, 618624.Google Scholar
Gunderson, DR and Dygert, PH (1988) Reproductive effort as a predictor of natural mortality rate. ICES Journal of Marine Science 44, 200209.Google Scholar
Hamel, OS (2014) A method for calculating a meta-analytical prior for the natural mortality rate using multiple life history correlates. ICES Journal of Marine Science 72, 6269.Google Scholar
Hamilton, KM, Shaw, PW and Morrit, D (2009) Prevalence and seasonality of Hematodinium (Alveolata: Syndinea) in a Scottish crustacean community. ICES Journal of Marine Science 66, 18371845.Google Scholar
Hewitt, DA (2008) Natural Mortality of Blue Crab: Estimation and Influence on Population Dynamics (PhD thesis). Virginia Institute of Marine Science, Virginia, USA.Google Scholar
Hewitt, DA and Hoenig, JM (2005) Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin 103, 433437.Google Scholar
Hewitt, DA, Lambert, DM, Hoenig, J and Lipcius, RN (2007) Direct and indirect estimates of natural mortality for Chesapeake Bay blue crab. Transactions of the American Fisheries Society 136, 10301040.Google Scholar
Hoenig, JM (1983) Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 81, 892902.Google Scholar
Hoenig, JM, Then, AY-H, Babcock, EA, Hall, NG, Hewitt, DA and Hesp, SA (2016) The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES Journal of Marine Science 73, 24532467.Google Scholar
Huchin-Mian, JP, Small, HJ and Shields, JD (2017) Patterns in the natural transmission of the parasitic dinoflagellate Hematodinium perezi in American blue crabs, Callinectes sapidus from a highly endemic area. Marine Biology 164, 153164.Google Scholar
Hussain, MAM, Bishop, JM and Xu, X (1996) Population characteristics of green tiger prawns, Penaeus semisulcatus, in Kuwait waters prior to the Gulf War. Hydrobiologia 337, 3747.Google Scholar
Hutchings, JA and Kuparinen, A (2017) Empirical links between natural mortality and recovery in marine fishes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 284, 20170693.Google Scholar
Jensen, AL (1996) Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53, 820822.Google Scholar
Kenchington, TJ (2014) Natural mortality estimators for information-limited fisheries. Fish and Fisheries 15, 533562.Google Scholar
Kilada, R and Acuña, E (2015) Direct age determination by growth band counts of three commercially important crustacean species in Chile. Fisheries Research 170, 134143.Google Scholar
López Quintero, FO, Contreras-Reyes, JE and Wiff, R (2017) Incorporating uncertainty into a length-based natural mortality estimator in fish populations. Fishery Bulletin 115, 355364.Google Scholar
Lorenzen, K (1996) The relationship between body weight and natural mortality in juvenile and adult fish a comparison of natural ecosystems and aquaculture. Journal of Fish Biology 49, 627647.Google Scholar
Lorenzen, K (2011) Age- and size-varying natural mortality rates: biological causes and consequences for fisheries assessment. In Estimating Natural Mortality in Stock Assessment Applications. U.S. Department of Commerce NOAA Technical Memo NMFS-F/SPO-119, 38 pp.Google Scholar
Macdonald, PDM and Pitcher, TJ (1979) Age groups from size-frequency data: a versatile and efficient method of analyzing distribution mixtures. Journal of the Fisheries Research Board of Canada 36, 9871001.Google Scholar
Pauly, D (1980) On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science 39, 175192.Google Scholar
Peterson, I and Wroblewski, S (1984) Mortality rate of fishes in the pelagic ecosystem. Canadian Journal of Fisheries and Aquatic Sciences 41, 11171120.Google Scholar
Queirolo, D, Ahumada, M, Apablaza, P, Wiff, R, Paramo, M, Lima, M, Montero, J, Canales, TM, Flores, A and López, F (2016) Evaluación directa de langostino amarillo y langostino colorado entre la II y VIII Regiones, año 2016. Instituto de Fomento Pesquero – Universidad Católica de Valparaíso, 283 pp.Google Scholar
Quinn, TJ and Deriso, RB (1999) Quantitative Fish Dynamics, 1st Edn. New York, NY: Oxford University Press.Google Scholar
Quiroz, JC, Montenegro, C, Báez, P, Espíndola, F, Canales, C, Reyes, H, Magnere, O, Yáñez, O, Tapia, J, Bahamonde, R, Arriagada, G and Gálvez, P (2006) Dinámica y estructura poblacional del Langostino Colorado III y IV Regiones. Fondo de Investigación Pesquera, FIP No 2005-41, 340 pp.Google Scholar
Quiroz, JC, Wiff, R and Caneco, B (2010) Incorporating uncertainty into estimation of natural mortality for two species of Rajidae fished in Chile. Fisheries Research 102, 297304.Google Scholar
Rikhter, VA and Efanov, VN (1976) On one of the approaches to estimation of natural mortality of fish populations. International Commission for the Northwest Atlantic Fisheries (Research Document) 76/VI/8, Serial No. 3777. 13 pp.Google Scholar
Roa, R (1993) Annual growth and maturity function of the squat lobster Pleuroncodes monodon in central Chile. Marine Ecology Progress Series 97, 157166.Google Scholar
Roa, R and Tapia, F (1998) Spatial differences in growth and sexual maturity between branches of a large population of the squat lobster Pleuroncodes monodon. Marine Ecology Progress Series 167, 185196.Google Scholar
Roff, DA (1984) The evolution of life history parameters. Canadian Journal of Fisheries and Aquatic Sciences 41, 9891000.Google Scholar
Ryer, CH, van Montfrans, J and Moody, KE (1997) Cannibalism, refugia and the molting blue crab. Marine Ecology Progress Series 147, 7785.Google Scholar
Vetter, EF (1988) Estimation of natural mortality in fish stocks: a review. Fishery Bulletin 86, 2543.Google Scholar
Vogt, G (2011) Ageing and longevity in the Decapoda (Crustacea): a review. Zoologischer Anzeiger 251, 125.Google Scholar
Wehrtmann, IS and Acuña, E (2011) Squat lobster fisheries. In Poore, GCB, Ahyong, ST and Taylor, J (eds), The Biology of Squat Lobsters. Melbourne: CSIRO Publishing, pp. 297322.Google Scholar
Wiff, R, Quiroz, JC, Ojeda, V and Barrientos, M (2011) Estimation of natural mortality and uncertainty in pink cusk-eel (Genypterus blacodes Schneider, 1801) in southern Chile. Latin American Journal of Aquatic Research 39, 316326.Google Scholar
Windsland, K (2014) Total and natural mortality of red king crab (Paralithodes camtschaticus) in Norwegian waters: catch–curve analysis and indirect estimation methods. ICES Journal of Marine Science 72, 642650.Google Scholar
Xiao, Y and McShane, P (2000) Estimation of instantaneous rates of fishing and natural mortalities from mark-recapture data on the western king prawn Penaeus latisulcatus in the Gulf St. Vincent, Australia, by conditional likelihood. Transactions of the American Fisheries Society 129, 10051017.Google Scholar
Zhang, C-I and Megrey, B (2006) A revised Alverson and Carney model for estimating the instantaneous rate of natural mortality. Transactions of the American Fisheries Society 135, 620633.Google Scholar
Zmora, N, Trant, J, Zohar, Y and Chung, JS (2009) Molt-inhibiting hormone stimulates vitellogenesis at advanced ovarian developmental stages in the female blue crab, Callinectes sapidus I: an ovarian stage dependent involvement. Saline System 5, 111.Google Scholar