Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-16T05:54:59.284Z Has data issue: false hasContentIssue false

Feeding Strategies and Partition of Food Resources in Deep-Water Decapod Crustaceans (400–2300 m)

Published online by Cambridge University Press:  11 May 2009

Joan E. Cartes
Affiliation:
Institut de Ciències del Mar, Passeig Joan de Borbó, s/n, 08039 Barcelona, Spain

Extract

Food resource partitioning and trends in feeding strategies were examined in 3882 individual decapod crustaceans collected from 1989 to 1990, using bottom trawls at depths between 380 and 2261 m in the Catalan Sea (western Mediterranean). The vertical distribution of available food resources near the bottom was the most important factor responsible for food resource partitioning among bathyal decapod crustaceans by depth stratum and season. Decapods were assigned to five different trophic groups according to the food resource exploited and feeding strategy employed (macroplankton feeders, macroplankton-epibenthic feeders, epibenthic feeders, epibenthic-endobenthic feeders, and deposit feeders). There was little dietary overlap, indicating that species did partition the available resources. Overall, dietary overlap values among species increased with depth. Although a trend to increase H’ values for diets with depth was observed, this was not significant (P < 0.10), whereas differences in the percentage of empty stomachs and the frequency of foraminiferans and pteropods in the foreguts increased significantly (P < 0.05) with depth. This last result is indicative of a progressive increase in the importance of deposit feeding in decapod crustaceans as depth increases.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begon, M., Harper, J.L. & Townsend, C.R., 1990. Ecology. Individuals, populations and communities. Cambridge, Massachusetts: Blackwell Scientific Publications.Google Scholar
Blaber, S.J. & Bulman, C.M., 1987. Diets of fishes of the upper continental slope of eastern Tasmania: content, caloric values, dietary overlap and trophic relationships. Marine Biology, 95, 345357.Google Scholar
Buchanan, J.B., 1963. The biology of Calocaris macandreae (Crustacea: Thalassinidae). Journal of the Marine Biological Association of the United Kingdom, 43, 729747.Google Scholar
Carpine, C., 1970. Ecologie de l'étage bathyal dans la Méditerranée occidentale. Memoires de l'Institut Océanographique. Monaco, 2, 1146.Google Scholar
Cartes, J.E., 1991. An´lisis de las comunidades y estructura trófica de los crustáceos decápodos batiales del Mar Catalán. Tesis doctoral, Universidad Politecnica de Catalunya, Spain.Google Scholar
Cartes, J.E., 1993. Feeding habits of pasiphaeid shrimps close to the bottom on the western Mediterranean slope. Marine Biology, 112, 459468.CrossRefGoogle Scholar
Cartes, J.E., 1994. Influence of depth and seasonality in the diet of the aristeid shrimp Aristeus antennatus along the continental slope (400 to 2300 m) in the Catalan Sea, Marine Biology, 120, 639648.Google Scholar
Cartes, J.E. & Abelló, P., 1992. Comparative feeding habits of polychelid lobsters in the western Mediterranean. Marine Ecology Progress Series, 84, 139150.CrossRefGoogle Scholar
Cartes, J.E. & Sardà, F., 1993. Patterns of zonation of the deep sea decapod fauna in the Catalan Sea (western Mediterranean). Marine Ecology Progress Series, 94, 2734.CrossRefGoogle Scholar
Cartes, J.E. & Sorbe, J.C., 1993. Les communautés suprabenthiques de la Mer Catalane (Mediterranée occidentale): donnnées préliminaires sur la répartition bathymétrique et l'abondance des Crustacés Péracarides. Crustaceana, 64, 155171.CrossRefGoogle Scholar
Cartes, J.E., Sorbe, J.C. & Sardà, F., 1994. Spatial distribution of deep sea decapods and euphausiids near the bottom in the northwestern Mediterranean. Journal of Experimental Marine Biology and Ecology, 179, 131144.CrossRefGoogle Scholar
Chardy, P., Glemarec, M. & Laurec, A., 1976. Application of inertia methods to benthic marine ecology. Practical implications of the basic options. Estuarine and Coastal Marine Science, 4, 179205.Google Scholar
Crosnier, A. & Forest, J., 1973. Les crevettes profondes de l'Atlantique oriental tropical. Faune Tropicale O.R.S.T.O.M., 19, 1409.Google Scholar
Dayton, P.K. & Hessler, R.R., 1972. Role of biological disturbace in maintaining diversity in the deep sea. Deep-Sea Research, 19, 199208.Google Scholar
Elizalde, M., Sorbe, J.C. & Dauvin, J.-C., 1994. Las comunidades suprabentonicas batiales del golfo de Vizcaya (margen sur del cañón de Cap-Ferret): composición faunística y estructura. Publicaciones especiales del Instituto Español de Oceanograia, 11, 247258.Google Scholar
Gage, J.D. & Tyler, P.A. ed., 1991. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press.Google Scholar
Gascon, D. & Legget, W.C., 1977. Distribution, abundance and resource utilization of littoral zone fishes in response to a nutrient/production gradient in Lake Memphremagog. Journal of the Fisheries Research Board of Canada, 34, 11051117.CrossRefGoogle Scholar
Grassle, J.F. & Sanders, H.L., 1973. Life histories and the role of disturbance. Deep-Sea Research, 20, 643659.Google Scholar
Haedrich, R.L., Rowe, G.T. & Polloni, P.T., 1980. The megabenthic fauna in the deep sea south of New England, USA. Marine Biology, 57, 165179.CrossRefGoogle Scholar
Hyslop, E.J., 1980. Stomach content analysis. A review of methods and their application. Journal of Fish Biology, 17, 411429.CrossRefGoogle Scholar
Jumars, P.A. & Gallagher, E.D., 1982. Deep sea community structure: three plays on the benthic proscenium. In The environment of the deep-sea (ed. W.G., Ernst and V.G., Morin), pp. 217254. Englewood Cliffs, New Jersey: Prentice-Hall.Google Scholar
Keast, A., 1978. Feeding interrelations between age-groups of punpkinseed (Lepomis gibbosus) and comparisons with bluegill (L macrochirus). Journal of the Fisheries Research Board of Canada, 35, 1227.CrossRefGoogle Scholar
Lagardère, J.P., 1976a. Recherches sur l'alimentation des crevettes bathypelagiques du Talus Continental du Golfe de Gascogne. Revue des Travaux de l'Institut de Pêches maritimes, 39, 213229.Google Scholar
Lagardère, J.P., 1976b. Recherches sur la distribution verticale et sur l'alimentation des Crustacés Décapodes de la Pente Continentale de l'Atlantique nord-oriental. Thèse Univ. Aix-Marseille II, Arch. orig. C.N.R.S.Google Scholar
Lagardère, J.P., 1977. Recherches sur la distribution verticale et sur l'alimentation des crustacés decapodes benthiques de la Pente Continentale du Golfe de Gascogne. Analyse des groupements carcinologiques. Bulletin du Centre d'Etudes et de Recherches scientifiques de Biarritz, 11, 367440.Google Scholar
Lleonart, J., 1979. La comunitat epibentónica del bane canario-saharià, tipificació i cartografia mitjançant l'anàlisi de dades i comentaris crítics sobre la metodologia. Tesi doctoral. Universitat de Barcelona, Spain.Google Scholar
Macpherson, E., 1979. Ecological overlap between macrourids in the western Mediterranean Sea. Marine Biology, 53, 149159.CrossRefGoogle Scholar
Macpherson, E., 1981. Resource partitioning in a Mediterranean demersal fish community. Marine Ecology Progress Series, 4, 183193.CrossRefGoogle Scholar
Margalef, R., 1974. Ecologia. Ed. Omega: Barcelona.Google Scholar
Omori, M. & Ohta, S., 1981. The use of underwater camera in studies of vertical distribution and swimming behaviour of a sergestid shrimp Sergia lucens. Journal of Plankton Research, 3, 107120.Google Scholar
Pérès, J.M., 1985. History of the Mediterranean biota and the colonization of the depths. In Key environments: western Mediterranean (ed. R., Margalef), pp. 198232. New York: Pergamon Press.Google Scholar
Rex, M.A., 1977. Zonation in deep sea gastropods: the importance of biological interactions to rates of zonation. In Biology of benthic organisms (ed. B.F., Keegan et al.), pp. 521530. New York, Pergamon Press.CrossRefGoogle Scholar
Reyss, D., 1971. Les canyons sous-marins de la mer Catalane: le rech du Cap et le rech LacazeDuthiers. III. Les peuplements de macrofaune benthique. Vie et Milieu, 22, 529613.Google Scholar
Roe, H.S.J., 1984. The diel migrations and distributions within a mesopelagic community in the north-east Atlantic. 2. Vertical migrations and feeding of mysid and decapod Crustacea. Progress in Oceanography, 13, 269318.Google Scholar
Rowe, G.T., 1983. Biomass and production of the deep-sea macrobenthos. In The Sea. Vol. 8. Deep-sea biology (ed. G.T., Rowe), pp. 97122. New York: John Wiley & Sons.Google Scholar
Rowe, G.T., Polloni, P.T. & Haedrich, R.L., 1981. The deep sea macrobenthos on the continental margin of the northwest Atlantic Ocean. Deep-Sea Research, 29, 257278.Google Scholar
Sanders, H.L., 1968. Marine benthic diversity: a comparative study. American Naturalist, 102, 243282.CrossRefGoogle Scholar
Sardà, F., Cros, M.L., & Sesé, B., 1989. Ca balance during moulting in the prawn Aristeus antennatus (Risso, 1816): the role of cuticle calcification in the life cycle of decapod crustaceans. Journal of Experimental Marine Biology and Ecology, 129, 161171.Google Scholar
Sastry, A.N., 1983. Ecological aspects of reproduction. In The biology of Crustacea, vol. 8 (ed. D.E., Bliss). New York: Academic Press.Google Scholar
Schoener, T.W., 1974. Resource partitioning in ecological communities. Science, New York, 185, 2739.Google Scholar
Shannon, C.E. & Weaver, W., 1963. The mathematical theory of communication. Urbana: Urbana Press.Google Scholar
Sokal, R.R., & Rohlf, F.J., 1979. Biometria. Principio y métodos estadísticos en la investigatión biológica. Madrid: H. Blume, Ediciones.Google Scholar
Sokolova, M.N., 1990. On the size of the deep sea macrobenthic invertebrates. Progress in Oceanography, 24, 251252.CrossRefGoogle Scholar
Stefanescu, C., Lloris, D. & Rucabado, J., 1992. Deep-living demersal fishes in the Catalan Sea (western Mediterranean) below a depth of 1000 m. Journal of Natural History, 26, 197213.Google Scholar
Thiel, H., 1983. Meiobenthos and nanobenthos of the deep sea. In The sea. Vol. 8. Deep-sea biology (ed. G.T., Rowe), pp. 167230. New York: John Wiley & Sons.Google Scholar
Tyler, P.A., 1988. Seasonality in the deep sea. Oceanography and Marine Biology. Annual Review, 26, 227258.Google Scholar
Villanueva, R., 1992. Deep sea cephalopods of the northwestern Mediterranean: indications of up-slope ontogenic migration in two bathybenthic species. Journal of Zoology, 227, 267276.Google Scholar
Williams, M.J., 1981. Methods for analysis of natural diet in Portunid crabs (Crustacea, Decapoda, Portunidae). Journal of Experimental Marine Biology and Ecology, 52, 103113.CrossRefGoogle Scholar
Whittaker, R.H. & Fairbanks, C.W., 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology, 39, 4665.Google Scholar
Zaret, T.M. & Rand, A.S., 1971. Competition in tropical stream fishes: support for the competitive exclusion principle. Ecology, 52, 336342.Google Scholar