Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T06:38:49.721Z Has data issue: false hasContentIssue false

Integrating genetic, phenotypic and ecological analyses to assess the variation and clarify the distribution of the Cortes geoduck (Panopea globosa)

Published online by Cambridge University Press:  31 October 2012

Pablo de Jesús Suárez-Moo
Affiliation:
Molecular Ecology Laboratory, Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, México
Luis E. Calderon-Aguilera
Affiliation:
Fisheries and Coastal Ecology Laboratory, Department of Marine Ecology, CICESE, Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, México
Héctor Reyes-Bonilla
Affiliation:
Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Carretera al sur KM 5.5, A.P. 19-B, La Paz, Baja California Sur 23080, México
Gabriela Díaz-Erales
Affiliation:
Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Carretera al sur KM 5.5, A.P. 19-B, La Paz, Baja California Sur 23080, México
Verónica Castañeda-Fernandez-de-Lara
Affiliation:
Centro Regional de Investigación Pesquera, La Paz, Carretera a Pichilingue KM1, S/N Col. Esterito, La Paz, B.C.S. 23020, México
Eugenio Alberto Aragón-Noriega
Affiliation:
Centro de Investigaciones Biológicas del Noroeste, Unidad Guaymas, Km 2.35 Camino al Tular, Estero de Bacochibampo, Guaymas, Sonora 85454, México
Axayácatl Rocha-Olivares*
Affiliation:
Molecular Ecology Laboratory, Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, México
*
Correspondence should be addressed to: A. Rocha-Olivares, Molecular Ecology Laboratory, Department of Biological Oceanography, CICESE, Carretera Ensenada-Tijuana No. 3918, Ensenada, Baja California 22860, México email: arocha@cicese.mx

Abstract

The Cortes geoduck (Panopea globosa) has been considered a Gulf of California (GC) endemic but anecdotal and unpublished evidence has suggested its presence in Bahía Magdalena (BM), on the Pacific coast of southern Baja California. Establishing the identity of geoduck clams and their distribution limits is not only of clear biological significance to understand their structural and functional variation, but is also of consequence for their conservation and management, given the multi-million dollar fishery they support in north-west Mexico. We analysed Panopea clams from Mexican populations, including BM, using an integrative approach including genetics, morphometrics, and an ecological niche model. Our genetic results (restriction fragment length polymorphisms of nuclear ribosomal DNA and mtDNA cytochrome c oxidase subunit I sequences) clearly identify BM geoducks as P. globosa, implying a significant geographical range expansion outside of the GC and refuting its status as endemic to the Gulf. On the other hand, clams from BM were phenotypically different (shell significantly higher) from other Mexican P. globosa and Panopea generosa specimens, which may account for the confusion in their morphological identification. The ecological niche model for P. globosa, integrating ecological and distributional data from the GC, revealed a very low probability (<10%) that this species could successfully occupy BM. Our results and those of others suggest that the Cortes geoduck population in BM may be adapted to specific environmental conditions differing from those experienced by conspecifics inside the Gulf and is likely isolated. This is highly relevant for the management plans of Mexican geoducks.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez-Borrego, S. (2010) Physical, chemical, and biological oceanography of the Gulf of California. In Brusca, R.C. (ed.) The Gulf of California: biodiversity and conservation. Tucson, AZ: University of Arizona Press, pp. 2448.Google Scholar
Aragón-Noriega, E.A., Chavez-Villalba, J., Gribben, P.E., Alcantara-Razo, E., Maeda-Martínez, A.N., Arambula-Pujol, E.M., Garcia-Juarez, A.R. and Maldonado-Amparo, R. (2007) Morphometic relationships, gametogenic development and spawning of the geoduck clam Panopea globosa (Bivalvia: Hiatellideae) in the Central Gulf of California. Journal of Shellfish Research 26, 423431.CrossRefGoogle Scholar
Arambula-Pujol, E.M., García-Juárez, A.R., Alcántara-Razo, E. and Aragón-Noriega, E.A. (2008) Aspects of reproductive biology of the geoduck clam Panopea globosa (Dall 1898) in the Gulf of California. Hidrobiológica 18, 8998.Google Scholar
Bernard, F.R., Cai, Y.Y. and Morton, B. (1993) Catalogue of the living marine bivalve molluscs of China. Hong Kong: Hong Kong University Press.Google Scholar
Bernardi, G., Findley, L. and Rocha-Olivares, A. (2003) Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution 57, 15991609.Google ScholarPubMed
Bizarro, J.J. (2008) A review of the physical and biological characteristics of the Bahía Magdalena Lagoon Complex (Baja California Sur, Mexico). Bulletin of the Southern California Academy of Sciences 107, 124.Google Scholar
Bureau, D., Hajas, W., Surry, N.W., Hand, C.M., Dovey, G. and Campbell, A. (2002) Age, size structure, and growth parameters of geoducks (Panopea abrupta Conrad, 1849) from 34 locations in British Columbia sampled between 1993 and 2000. Fisheries and Oceans Canada, Canadian Technical Report of Fisheries and Aquatic Sciences, no. 2413, 84.Google Scholar
Calderon-Aguilera, L.E., Aragón-Noriega, E.A., Reyes-Bonilla, H., Paniagua-Chávez, C.G., Romo-Curiel, A.E. and Moreno-Rivera, V.M. (2010) Reproduction of the Cortes geoduck Panopea globosa (Bivalvia: Hiatellidae) and its relationship with temperature and ocean productivity. Journal of Shellfish Research 29, 135141.Google Scholar
Campbell, A., Yeung, C.W., Dovey, G. and Zhang, Z. (2004) Population biology of the Pacific geoduck clam, Panopea abrupta, in experimental plots, southern British Columbia, Canada. Journal of Shellfish Research 23, 661673.Google Scholar
Cervantes-Duarte, R., López-López, S. and González-Rodríguez, E. (2007) Características hidrológicas de Bahía Magdalena, en el periodo 2001–2003. Oceánides 22, 112.Google Scholar
Coan, E.V., Scott, P.H. and Bernard, F.R. (2000) Bivalve seashells of western North America. Santa Barbara, CA: Santa Barbara Museum of Natural History.Google Scholar
Dall, W. (1918) Pleistocene fossil of Magdalena Bay, Lower California, collected by Charles Russell Orcutt. Nautilus 32, 2326.Google Scholar
Diario Oficial de la Federación (2012) Acuerdo por el que se da a conocer el Plan de Manejo para la Pesquería de Almeja Generosa (Panopea spp.) en las costas de Baja California, México. Secretaría de Agricultura Ganaderia Desarrollo Rural Pesca y Alimentación, Mexico City, pp. 1850. [Viernes 23 de marzo de 2012.]Google Scholar
Dudik, M., Phillips, S.J. and Schapire, R.E. (2007) Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. Journal of Machine Learning Research 8, 12171260.Google Scholar
Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. and Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 4357.Google Scholar
Ellner, S. and Hairston, N.G. (1994) Role of overlapping generations in maintaining genetic-variation in a fluctuating environment. American Naturalist 143, 403417.CrossRefGoogle Scholar
Excoffier, L., Laval, G. and Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 4750.Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R.C. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Franklin, J. (2009) Mapping species distributions: spatial inference and prediction. Cambridge, UK: Cambridge University Press.Google Scholar
Garcia-Rodriguez, F.J. and Perez-Enriquez, R. (2006) Genetic differentiation of the California spiny lobster Panulirus interruptus (Randall, 1840) along the west coast of the Baja California Peninsula, Mexico. Marine Biology 148, 621629.Google Scholar
Hendrickx, M.E., Brusca, R.C. and Findley, L.T. (2005) A distributional checklist of the macrofauna of the Gulf of California, Mexico. Part I. invertebrates. Tucson, AZ: Arizona-Sonora Desert Museum.Google Scholar
Jacobs, D.K., Haney, T.A. and Louie, K.D. (2004) Genes, diversity, and geologic process on the Pacific coast. Annual Review of Earth and Planetary Science 32, 601652.Google Scholar
Jamison, D., Heggen, R. and Lukes, J. (1984) Underwater video in a regional benthos survey. Proceedings of the Pacific Congress on Marine Technology. Honolulu, Hawaii: Marine Technology Society.Google Scholar
Keen, A.M. (1971) Sea shells of Tropical West America. Marine mollusks from Baja California to Peru. 2nd edition. Stanford, CA: Stanford University Press.Google Scholar
Kimura, M. (1981) Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78, 454458.Google Scholar
Lavin, M.F., Fiedler, P.C., Amador, J.A., Ballance, L.T., Farber-Lorda, J. and Mestas-Nunez, A.M. (2006) A review of eastern tropical Pacific oceanography: summary. Progress in Oceanography 69, 391398.Google Scholar
Leyva-Valencia, I. (2012) Diferencias morfométricas en dos especies de la almeja generosa: Panopea generosa (Gould 1850) y P. globosa (Dall 1898) y filogenia molecular de cinco especies del género Panopea . Doctoral thesis. CIBNOR, La Paz, Baja California Sur.Google Scholar
Leyva-Valencia, I., Álvorez-Castañeda, S.T., Lluch-Cota, D.B., González-Paláez, S., Pérez-Valenica, S., Vadopalas, B., Ramírez-Pérez, S. and Cruz-Hernández, P. (in press) Shell shape differences between two Panopea species and phenotypic variation among P. globosa at different sites using two geometric morphometrics approaches. Malacologia.Google Scholar
Millán-Núñez, R. and Lara-Lara, J.R. (1995) Productividad primaria del fitoplancton del Pacífico mexicano: un diagnóstico. In González-Farías, F. and de la Rosa-Vélez, J. (eds) Temas de oceanografía biológica en México II. Ensenada, Mexico: Universidad Autónoma de Baja California, pp. 3162.Google Scholar
Morris, R.H., Abbott, D.P. and Haderlie, E.C. (1980) Intertidal invertebrates of California. Stanford, CA: Stanford University Press.Google Scholar
Pérez-Valencia, L.I. (2011) Variabilidad genética de la almeja de sifón Panopea globosa (Dall, 1898) en el noroeste de México . MSc thesis. Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, México.Google Scholar
Pérez-Valencia, S.A. (2012) Edad y crecimiento de la almeja de sifón Panopea globosa en el Alto Golfo de California, México. Doctoral thesis. Centro de Investigaciones Biológicas del Noroeste, La Paz Baja California Sur, México.Google Scholar
Pérez-Valencia, S.A. and Aragón-Noriega, E.A. (in press) Age and growth of the Cortes Geoduck Panopea globosa (Dall 1898) in the upper Gulf of California. Indian Journal of Marine Sciences.Google Scholar
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. and Araújo, M.B. (2011) Ecological niches and geographic distributions. Princeton, NJ: Princeton University Press.Google Scholar
Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.Google Scholar
Phillips, S.J., Dudik, M. and Schapire, R.E. (2004) A maximum entropy approach to species distribution modeling. Proceedings of the International Conference on Machine Learning 21, 655662.Google Scholar
Rice, W.R. (1989) Analyzing tables of statistical tests. Evolution 43, 223225.Google Scholar
Rocha-Olivares, A., Leal-Navarro, R.A., Kimbrell, C., Lynn, E.A. and Vetter, R.D. (2003) Microsatellite variation in the Mexican rockfish Sebastes macdonaldi . Scientia Marina 67, 451460.Google Scholar
Rocha-Olivares, A., Calderon-Aguilera, L.E., Aragon-Noriega, E.A., Saavedra-Sotelo, N.C. and Moreno-Rivera, V.M. (2010) Genetic and morphological variation of northeast Pacific Panopea clams: evolutionary implications. Journal of Shellfish Research 29, 327335.Google Scholar
Stepien, C.A., Rosenblatt, R.H. and Bargmeyer, B.A. (2001) Phylogeography of the spotted sand bass, Paralabrax maculatofasciatus: divergence of Gulf of California and Pacific coast populations. Evolution 55, 18521862.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA 5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.Google Scholar
Terry, A., Bucciarelli, G. and Bernardi, G. (2000) Restricted gene flow and incipient speciation in disjunct Pacific Ocean and Sea of Cortez populations of a reef fish species, Girella nigricans . Evolution 54, 652659.Google Scholar
Tittensor, D.P., Mora, C., Jetz, W., Lotze, H.K., Ricard, D., Berghe, E.V. and Worm, B. (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466, 10981107.Google Scholar
Vadopalas, B., Pietsch, T.W. and Friedman, C.S. (2010) The proper name for the geoduck: resurrection of Panopea generosa Gould, 1850, from the synonymy of Panopea abrupta (Conrad, 1849) (Bivalvia: Myoida: Hiatellidae). Malacologia 52, 169173.Google Scholar