Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T04:07:54.243Z Has data issue: false hasContentIssue false

The kinetics of growth control in a colonial hydroid

Published online by Cambridge University Press:  11 May 2009

A. R. D. Stebbing
Affiliation:
Natural Environment Research Council, Institute for Marine Environmental Research, Prospect Place, The Hoe, Plymouth

Extract

It is suggested that the cumulative view of growth in which some index of biomass is plotted against time tends to obscure temporal variations in the growth process that might provide evidence of how it is controlled. Experiments with the colonial hydroid Campanularia flexuosa show that the action of a growth control mechanism can be demonstrated by considering changes in specific rates of growth determined at frequent intervals in time. However, it is also necessary to disturb the growth process slightly in order to initiate the action of the control mechanism, and having done so, to isolate the effect of the disturbance on growth and thus the action of the control mechanism. This is done by expressing the specific growth rate of organisms whose growth is disturbed as a percentage of that of control organisms of the same age.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, W. R., 1960. Design for a Brain. 286 pp. London: Chapman and Hall.Google Scholar
Bend, J. R. & James, M. O., 1977. Xenobiotic metabolism in marine and freshwater species. Biochemical and Biophysical Perspectives in Marine Biology, 4, 125188.Google Scholar
Berrill, N. J., 1949. The polymorphic transformations of Obelia. Quarterly Journal of Microscopical Science, 90, 235264.Google Scholar
Bertalanffy, L., 1951. Theoretische Biologie, 2nd edition. 304 pp. Bern: Francke.Google Scholar
Bertalanffy, L., 1960. Principles and theory of growth. In Fundamental Aspects of Normal and Malignant Growth (ed. Nowinski, W. W.), pp. 137259. Amsterdam: Elsevier.Google Scholar
Braverman, M. H., 1971. Studies on hydroid differentiation. VI. Regulation of hydranth formation in Podocoryne carnea. Journal of Experimental Zoology, 176, 361382.CrossRefGoogle ScholarPubMed
Braverman, M. H., 1974. The cellular bases of morphogenesis and morphostasis in hydroids. Oceanography and Marine Biology, an Annual Review, 12, 129221.Google Scholar
Braverman, M. H. & Schrandt, R. G., 1966. Colony development of a polymorphic hydroid as a problem in pattern formation. In The Cnidaria and Their Evolution (ed. Rees, W. J.), pp. 169198. London: Academic Press.Google Scholar
Brown, B. E., 1978. Lead detoxification by a copper-tolerant isopod. Nature, London, 276, 388390.CrossRefGoogle Scholar
Bryan, G. W., 1976. Some aspects of heavy metal tolerance in aquatic organisms. In Effects of Pollutants on Aquatic Organisms (ed. Lockwood, A. P. M.), pp. 734. Cambridge: Cambridge University Press.Google Scholar
Calow, P., 1973. On the regulatory nature of individual growth: some observations from freshwater snails. Journal of Zoology, 170, 415428.CrossRefGoogle Scholar
Calow, P., 1976. Biological Machines. A Cybernetic Approach to Life. 134 pp. London: Edward Arnold.Google Scholar
Carlson, G. L., 1977. Regulatory phenomena and the data of growth. Growth, 41, 2532.Google ScholarPubMed
Chapman, G. & Stebbing, A. R. D., 1980. The modular habit – a recurring strategy. In Proceedings of the IVth International Coelenterate Conference (ed. Tardent, P. and Tardent, R.), pp. 157162. Amsterdam: Elsevier.Google Scholar
Clark, A. J., 1937. General Pharmacology. 228 pp. Berlin: Verlag von Julius Springer.Google Scholar
Crowell, S.J 1953. The regression-replacement cycle of hydranths of Obelia and Campanularia. Physiological Zoology, 26, 319327.CrossRefGoogle Scholar
Davis, L. V., 1966. Inhibition of growth and regeneration in Hydra by crowded culture water. Nature, London, 212, 12151217.CrossRefGoogle Scholar
Evans, G. C, 1972. The Quantitative Analysis of Plant Growth. 734 pp. Oxford: Blackwell.Google Scholar
Frenster, J. H., 1962 a. Load tolerance as a quantitative estimate of health. Annals of Internal Medicine, 57, 788794.CrossRefGoogle ScholarPubMed
Frenster, J. H., 1962 b. The magnitude of disease as measured by tolerance tests. Journal of Theoretical Biology, 2, 159164.CrossRefGoogle Scholar
Gause, G. F., 1934. The Struggle for Existence. 163 pp. Baltimore: Williams and Wilkins.CrossRefGoogle ScholarPubMed
Goss, R. J., 1964. Adaptive Growth 360 pp. London: Logos Press.Google Scholar
Goss, R. J., 1978. The Physiology of Growth. 441 pp. New York: Academic Press.Google Scholar
Grime, J. P. & Hunt, R., 1975. Relative growth rate: its range and adaptive significance in a local flora. Journal of Ecology, 63, 393422.CrossRefGoogle Scholar
Hubbell, S. P., 1971. Of sowbugs and systems: the ecological bioenergetics of a terrestrial isopod. In Systems Analysis and Simulation in Ecology (ed. Patten, B. C.), pp. 269324. New York: Academic Press.CrossRefGoogle Scholar
Hull, D., 1974. Philosophy of Biological Science. 148 pp. New Jersey: Prentice Hall.Google Scholar
Huxley, J. & De Beer, G., 1923. Studies in dedifferentiation. IV Resorption and differential inhibition in Obelia and Campanularia. Quarterly Journal of Microscopical Science, 67, 473495.Google Scholar
Jackson, C. M., 1937. Recovery of rats upon refeeding after prolonged suppression of growth by underfeeding. Anatomical Record, 68, 371381.CrossRefGoogle Scholar
Karbe, L., 1972. Marine Hydroiden als Testorganismen zur Prüfung der Toxizität von Abwasserstoffen. Die Wirkung von Schwermetallen auf Kolonien von Eirene viridula. Marine Biology, 12, 316328.CrossRefGoogle Scholar
Kavenau, J. L., 1960. A model of growth and growth control in mathematical terms. II. Compensatory organ growth in the adult. Proceedings of the National Academy of Sciences of the United States of America, 46, 16581673.CrossRefGoogle Scholar
Kinne, O., 1965. Über den Einfiuss des Salzgehaltes und der Temperatur auf Wachstum, Form und Vermchrung bei dem Hydroidpolypen Cordylophora caspia (Pallas), Thecata, Clavidae. Zoologische Jahrbücher (Abteilung Allgemeine Zoologie und Physiologie der Tiere), 66, 565–638.Google Scholar
Laird, A. K., 1964. Dynamics of tumour growth. British Journal of Cancer, 18, 490502.CrossRefGoogle Scholar
Laird, A. K., 1965 a. Dynamics of relative growth. Growth, 29, 249263.Google ScholarPubMed
Laird, A. K., 1965 b. Dynamics of tumour growth: comparison of growth rates and extrapolation of growth curves to one cell. British Journal of Cancer, 19, 278291.CrossRefGoogle ScholarPubMed
Laird, A. K., Tyler, S. A. & Barton, A. D., 1965. Dynamics of normal growth. Growth, 29, 233248.Google ScholarPubMed
Lerner, A. Ya., 1972. Fundamentals of Cybernetics. 356 pp. London: Chapman and Hall.Google Scholar
Loomis, W. F., 1954. Environmental factors controlling growth in Hydra. Journal of Experimental Zoology, 126, 223234.CrossRefGoogle Scholar
Lotka, A. J., 1956. Elements of Mathematical Biology, 465 pp. New York: Dover Publications.Google Scholar
Luckey, T. D., 1959. Antibiotics in nutrition. In Antibiotics, Their Chemistry and Non-medical Uses (ed. Goldberg, H. S.), pp. 174321. Princeton: D. Van Nostrand.Google Scholar
Luckey, T. D., 1975. Hormology with inorganic compounds. In Environmental Quality and Safety, Supplement vol. 1 (ed. Coulston, F. and Korte, F.), pp. 81118. Stuttgart: Georg Thieme.Google Scholar
Mayr, E., 1961. Cause and effect in biology. Science, New York, 134, 15011506.CrossRefGoogle ScholarPubMed
Mccance, R. A. & Widdowson, E. M., 1962. Nutrition and growth. Proceedings of the Royal Society (B), 156, 326337.Google Scholar
Medawar, P. B., 1940. The growth, growth energy and ageing of the chicken's heart. Proceedings of the Royal Society (B), 129, 332355.Google Scholar
Medawar, P. B., 1941. The ‘laws’ of biological growth. Nature, London, 148, 772774.CrossRefGoogle Scholar
Medawar, P. B., 1945. Size, shape and age. In Essays on Growth and Form (ed. Le Gros Clark, W. E. and Medawar, P. B.), pp. 157187. Oxford: Clarendon Press.Google Scholar
Milsum, J. H., 1966. Biological Control Systems Analysis. 466 pp. New York: McGraw-Hill.Google Scholar
Minot, C., 1908. The Problem of Age, Growth and Death. 280 pp. New York: Putnams.Google Scholar
Moore, M. N. & Stebbing, A. R. D., 1976. The quantitative cytochemical effects of three metal ions on a lysosomal hydrolase of a hydroid. Journal of the Marine Biological Association of the United Kingdom, 56, 9951005.CrossRefGoogle Scholar
Newsholme, E. A. & Start, C, 1973. Regulation in Metabolism. 349 pp. London: Wiley.Google Scholar
Prader, A., Tanner, J. M. & Von Harnack, G. A., 1963. Catch-up growth following illness or starvation. Journal of Pediatrics, 62, 646659.CrossRefGoogle ScholarPubMed
Radford, P. J., 1967. Growth analysis formulae - their use and abuse. Crop Science, 7, 171175.CrossRefGoogle Scholar
Rose, S. M., 1966. Polarised inhibitory control of regional differentiation during regeneration in Tubularia. II. Separation of active materials by electrophoresis. Growth, 30, 429447.Google Scholar
Rose, S. M., 1967. Polarised inhibitory control of regional differentiation during regeneration in Tubularia. III. The effects of grafts across sea water - agar bridges in electric fields. Growth, 31, 149164.Google Scholar
Rose, S. M. & Powers, J. A., 1966. Polarised inhibitory control of regional differentiation during regeneration in Tubularia. I. The effect of extracts from distal and proximal regions. Growth, 30, 419427.Google Scholar
Schulz, H., 1888. Ueber Hefegifte. Pflügers Archiv für die gesamte Physiologic des Menschen und der Tiere, 42, 517541.CrossRefGoogle Scholar
Southam, C. M. & Erhlich, J., 1943. Effects of extract of western red cedar heartwood on certain wood-decaying fungi in culture. Phytopathology, 33, 517524.Google Scholar
Stebbing, A. R. D., 1971. Growth of Flustra foliacea (Bryozoa). Marine Biology, 9, 267272.CrossRefGoogle Scholar
Stebbing, A. R. D., 1976. The effects of low metal levels on a clonal hydroid. Journal of the Marine Biological Association of the United Kingdom, 56, 977994.CrossRefGoogle Scholar
Stebbing, A. R. D., 1979. An experimental approach to the determinants of biological water quality. Philosophical Transactions of the Royal Society (B), 286, 465481.Google Scholar
Stebbing, A. R. D. & Hiby, A. R., 1979. Cyclical fluctuations in the growth rate of stressed hydroid colonies. In Cyclic Phenomena in Marine Plants and Animals. Proceedings of the 13th European Marine Biology Symposium, Isle of Man, 1978 (ed. Naylor, E. and Hartnoll, R. G.), pp. 165172. Pergamon Press.Google Scholar
Stebbing, A. R. D. & Pomroy, A. J., 1978. A sublethal technique for assessing the effects of contaminants using Hydra littoralis. Water Research, 12, 631635.CrossRefGoogle Scholar
Tanner, J. M., 1963 a. Regulation of growth in size in mammals. Nature, London, 199, 845850.CrossRefGoogle ScholarPubMed
Tanner, J. M., 1963 b. The regulation of human growth. Child Development, 34, 817847.Google ScholarPubMed
Tanner, J. M., 1978. Foetus into Man. 250 pp. London: Open Books.Google Scholar
Tardent, P., 1955. Zum Nachweis eines regenerationshemmenden Stoffes von Tubularia. Revue suisse de zoologie, 62, 289294.CrossRefGoogle Scholar
Umbarger, H. E., 1956. Evidence for a negative feedback mechanism in the biosynthesis of isoleucine. Science, New York, 123, 848.CrossRefGoogle ScholarPubMed
Waddington, C. H., 1957. Strategy of the Genes. London: Allen and Unwin.Google Scholar
Waddington, C. H., 1962. Letter. Science, New York, 135, 976979.CrossRefGoogle ScholarPubMed
Waddington, C. H., 1977. Tools for Thought. 250 pp. London: Jonathan Cape.Google Scholar
Weis, P. & Kavenau, J. L., 1957. A model of growth and growth control in mathematical terms. Journal of General Physiology, 41, 147.CrossRefGoogle Scholar
Williams, J. P. G. & Hughes, P. C. R., 1975. Catch-up growth in rats undernourished for different periods during the suckling period. Growth, 39, 179193.Google ScholarPubMed
Yates, A. R. & Pardee, A. B., 1956. Control of pyrimidine biosynthesis in Escherichia coli by a feedback mechanism. Journal of Biological Chemistry, 221, 757770.CrossRefGoogle Scholar