Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T11:51:41.054Z Has data issue: false hasContentIssue false

Larval morphology and DNA barcodes as valuable tools in early detection of marine invaders: a new pea crab found in European waters

Published online by Cambridge University Press:  23 June 2017

Elena Marco-Herrero
Affiliation:
Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain
Pilar Drake
Affiliation:
Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain
Jose A. Cuesta*
Affiliation:
Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain
*
Correspondence should be addressed to: J.A. Cuesta, ICMAN-CSIC, Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain email: jose.cuesta@icman.csic.es

Abstract

Four species of Pinnotheridae inhabit European marine waters, Afropinnotheres monodi, Nepinnotheres pinnotheres, Pinnotheres pectunculi and Pinnotheres pisum. For these four species there are data available on the morphology of their larval stages as well as DNA markers. This information has allowed us to detect some larvae in plankton samples from the Gulf of Cadiz (SW Iberian Peninsula) that do not belong to any of these European pinnotherid species and to be confirmed by DNA barcoding. In this study these findings are shown as a case of early detection of a newly introduced and unknown species in European marine waters.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkins, D. (1954) The post-embryonic development of British Pinnotheres. Proceeding of the Zoological Society of London 124, 687715.Google Scholar
Becker, C. (2010) European pea crabs – taxonomy, morphology, and host-ecology (Crustacea: Brachyura: Pinnotheridae). PhD thesis, Johann Wolfgang Goethe Universität, Frankfurt, Germany.Google Scholar
Becker, C. and Türkay, M. (2010) Taxonomy and morphology of European pea crabs (Crustacea: Brachyura: Pinnotheridae). Journal of Natural History 44, 15551575.Google Scholar
Bolaños, J., Rivero, W., Hernández, J., Magán, I., Hernández, G., Cuesta, J.A. and Felder, D.L. (2005) Abbreviated larval development of the pea crab Orthotheres barbatus (Decapoda: Brachyura: Pinnotheridae) reared under laboratory conditions, with notes on larval characters of the Pinnotherinae. Journal of Crustacean Biology 25, 500506.Google Scholar
Brown, E.A., Chain, F.J.J., Zhan, A., MacIsaac, H.J. and Cristescu, M.E. (2016) Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Diversity and Distribution 22, 10451059.Google Scholar
Bui, Q.T., Casse, N., Leignel, V., Nicolas, V. and Chenais, B. (2008) Widespread occurrence of mariner transposons in coastal crabs. Molecular Phylogenetics and Evolution 47, 11811189.Google Scholar
Clark, P.F., Calazans, D.K. and Pohle, G.W. (1998) Accuracy and standardization of brachyuran larval descriptions. Invertebrate Reproduction and Development 33, 127144.Google Scholar
Clark, P.F. and Cuesta, J.A. (2015) Larval systematics of the Brachyura. In Castro, P., Davie, P.J.P., Guinot, D., Schram, F.R. and von Vaupel Klein, J.C. (eds) The Crustacea, treatise on zoology – anatomy, taxonomy, biology. Decapoda, Brachyura. Volume 9 (Part C-II). Brill: Leiden- Boston.Google Scholar
Cohen, A.N. and Carlton, J.T. (1998) Accelerating invasion rate in a highly invaded estuary. Science 279, 555558.Google Scholar
Comtet, T., Sandionigi, A., Viard, F. and Casiraghi, M. (2015) DNA (meta) barcoding of biological invasions, a powerful tool to elucidate invasion processes and help managing aliens. Biological Invasions 17, 905922.Google Scholar
Crandall, K.A. and Fitzpatrick, J.F.J. (1996) Crayfish molecular systematics, using a combination of procedures to estimate phylogeny. Systematic Biology 45, 126.Google Scholar
Cuesta, J.A., Bettoso, N., Comisso, G., Froglia, C., Mazza, G., Rinaldi, A., Rodriguez, A. and Scovacricchi, T. (2014) Record of an established population of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Palaemonidae) in the Mediterranean Sea, confirming a prediction. Mediterranean Marine Science 15, 569573.Google Scholar
Cuesta, J.A., González-Ortegón, E., Drake, P. and Rodríguez, A. (2004) First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Caridea, Palaemonidae) from European waters. Crustaceana 77, 377380.Google Scholar
Darling, J.A. (2015) Genetic studies of aquatic biological invasions, closing the gap between research and management. Biological Invasions 17, 951971.Google Scholar
Darling, J.A. and Mahon, A. (2011) From molecules to management, adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111, 111.Google Scholar
Darling, J.A. and Piranio, S. (2015) MOLTOOLS, a workshop on ‘Molecular tools for monitoring marine invasive species’. Biological Invasions 17, 809813.Google Scholar
Estoup, A., Largiadèr, C.R., Perrot, E. and Chourrout, D. (1996) Rapid one tube DNA extraction for reliable PCR detection of fish polymorphic marker and transgenes. Molecular Marine Biology and Biotechnology 5, 295298.Google Scholar
Inglis, G.J., Hurren, H., Oldman, J. and Haskew, R. (2006) Using habitat suitability index and particle dispersion models for early detection of marine invaders. Ecological Applications 16, 13771390.Google Scholar
López de la Rosa, I., García Raso, J.E. and Rodríguez, A. (2002) Evolution of a decapod community (Crustacea) of shallow soft bottoms with seaweeds from southern Europe. Journal of the Marine Biological Association of the United Kingdom 82, 8595.Google Scholar
Manning, R.B. (1993) West African pinnotherid crabs, subfamily Pinnotherinae (Crustacea, Decapoda, Brachyura). Bulletin du Muséum National d'Histoire Naturelle 15, 125178.Google Scholar
Manning, R.B. and Holthuis, L.B. (1981) West African brachyuran crabs (Crustacea, Decapoda). Smithsonian Contributions to Zoology 306, 1394.Google Scholar
Mantelatto, F.L., Carvalho, F.L., Simões, S.M., Negri, M., Souza-Carvalho, E.A. and Terossi, M. (2016) New primers for amplification of cytochrome c oxidase subunit I barcode region designed for species of Decapoda (Crustacea). Nauplius 24, e2016030.Google Scholar
Marco-Herrero, E., Drake, P., Gonzalez-Gordillo, J.I. and Cuesta, J.A. (2016) Larval development of the pea crab Afropinnotheres monodi Manning, 1993 (Decapoda, Pinnotheridae) using plankton-collected and laboratory-reared specimens: effects of temperature. Marine Biology Research 12, 4355.Google Scholar
Marco-Herrero, E., Rodríguez, A. and Cuesta, J.A. (2012) Morphology of the larval stages of Macropodia czernjawskii (Brandt, 1880) (Decapoda, Brachyura, Inachidae) reared in the laboratory. Zootaxa 3338, 3348.Google Scholar
Marco-Herrero, E., Torres, A.P., Cuesta, J.A., Guerao, G., Palero, F. and Abelló, P. (2013) The systematic position of Ergasticus (Decapoda, Brachyura) and allied genera, a molecular and morphological approach. Zoologica Scripta 42, 427439.Google Scholar
Montoliu, L., Miracle, M.R. and Elías-Gutierrez, M. (2015) Using DNA barcodes to detect non-indigenous species: the case of the Asian copepod Mesocyclops pehpeiensis Hu, 1943 (Cyclopidae) in two regions of the World. Crustaceana 88, 13231338.Google Scholar
Palacios-Theil, E. (2014) Molecular phylogenetics and species divergence in selected Pinnotheridae (Crustacea: Brachyura: Decapoda). PhD thesis, University of Louisiana at Lafayette, Lafayette, LA.Google Scholar
Palacios-Theil, E., Cuesta, J.A. and Felder, D.L. (2016) Molecular evidence for non-monophyly of the pinnotheroid crabs (Crustacea: Brachyura: Pinnotheroidea), warranting taxonomic reappraisal. Invertebrate Systematics 30, 127.Google Scholar
Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In Hillis, D.M., Moritz, C. and Mable, B.K. (eds) Molecular systematics. Sunderland, MA: Sinauer Associates, pp. 205247.Google Scholar
Radulovici, A.E., Saint-Marie, B. and Dufresne, F. (2009) DNA barcoding of marine crustaceans from the estuary and Gulf of St Lawrence: a regional-scale approach. Molecular Ecology Resources 9, 181187.Google Scholar
Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O'Neil, P., Parker, I.M., Thompson, J.N. and Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics 32, 305332.Google Scholar
Sandoz, M. and Hopkins, S.H. (1947) Early life history of the oyster crab, Pinnotheres ostreum (Say). The Biological Bulletin 93, 250258.Google Scholar
Schubart, C.D., Cuesta, J.A. and Felder, D.L. (2002) Glyptograpsidae, a new brachyuran family from Central America: larval and adult morphology, and a molecular phylogeny of the Grapsoidea. Journal of Crustacean Biology 22, 2844.Google Scholar
Schubart, C.D., Diesel, R. and Hedges, S.B. (1998) Rapid evolution to terrestrial life in Jamaican crabs. Nature 393, 363365.Google Scholar
Schubart, C.D., Neigel, J.E. and Felder, D.L. (2000) The use of the mitochondrial 16S rRNA gene for phylogenetic and biogeographic studies of Crustacea. In The biodiversity crisis and Crustacea. Proceedings of the Fourth International Crustacean Congress, Amsterdam, the Netherlands, 20–24 July 1998. Volume 2, Crustacean Issues 12. Boca Raton, FL: CRC Press, pp. 817830.Google Scholar
Schubart, C.D., Vannini, M., Cannicci, S. and Fratini, S. (2006) Molecular phylogeny of grapsoid crabs and allies based on two mitochondrial genes and a proposal for refraining from current superfamily classification. Journal of Zoological Systematics and Evolutionary Research 44, 193199.Google Scholar
Simberloff, D., Martin, J.L., Genovesi, P., Maris, V., Wardle, D.A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E. and Vilà, M. (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology and Evolution 28, 5866.Google Scholar
Subida, M.D., Arias, A.M., Drake, P., García Raso, J.E., Rodríguez, A. and Cuesta, J.A. (2011) On the occurrence of Afropinnotheres monodi Manning, 1993 (Decapoda: Pinnotheridae) in European waters. Journal of Crustacean Biology 31, 367369.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30, 27252729.Google Scholar
Tidbury, H.J., Taylor, N.G.H., Copp, G.H., Garnacho, E. and Stebbing, P.D. (2016) Predicting and mapping the risk of introduction of marine non-indigenous species into Great Britain and Ireland. Biological Invasions 18, 32773292.Google Scholar
Torres, A.P., Dos Santos, A., Cuesta, J.A., Carbonell, A., Massutí, E., Alemany, F. and Reglero, P. (2012) First record of Palaemon macrodactylus Rathbun, 1902 (Decapoda, Palaemonidae) in the Western Mediterranean. Mediterranean Marine Science 13, 278282.Google Scholar
Vander Zanden, M.J., Hansen, G.J.A., Higgins, S.N. and Kornis, M.S. (2010) A pound of prevention, plus a pound of cure: early detection and eradication of invasive species in the Laurentian Great Lakes. Journal of Great Lakes Research 36, 199205.Google Scholar
Wear, R.G. and Yaldwyn, J.C. (1966) Studies on thalassinid Crustacea (Decapoda, Macrura Reptantia) with a description of a new Jaxea from New Zealand and an account of its larval development. Zoological Publications from Victoria, University of Wellington 41, 127.Google Scholar
Xiong, W., Li, H. and Zhan, A. (2016) Early detection of invasive species in marine ecosystems using high-throughput sequencing, technical challenges and possible solutions. Marine Biology 163, e139.Google Scholar