Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T22:49:26.913Z Has data issue: false hasContentIssue false

Mitotic E- and Secretory F-Cells in the Hepatopancreas of the Shrimp Penaeus Semisulcatus (Crustacea: Decapoda)

Published online by Cambridge University Press:  11 May 2009

S. Y. Al-Mohanna
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge LL59 5EH
J. A. Nott
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge LL59 5EH
D. J. W. Lane
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge LL59 5EH

Extract

INTRODUCTION

It is apparent, in a review on the decapod hepatopancreas (Gibson & Barker, 1979) that there is some consensus of opinion that the epithelium consists of E-, R-, F- and B-cells and M-cells (Al-Mohanna, Nott & Lane, 1985). Also, it is agreed that the gland produces enzymes and absorbs, digests and stores nutrients and excretes waste material. However, the apportionment of these functions to the different cells and the descriptions of the cytological processes involved are variously explained. Thus, the activity of proteases and amylases has been demonstrated in the secretion produced by the gland but the source of these enzymes is attributed to different cells and various modes of secretion are proposed. Also, no secretion granules of the zymogen type have been seen.

There are probably two main reasons for the inconsistent interpretation of the activities of the cells. First, the different stages of the feeding and moult cycles are not taken into account and both these affect the cytology of the gland. Second, some of the functions have been deduced from observations of the fine structure without any experimental treatments to demonstrate more directly the processes involved. In the present work all the animals are taken at the same moult stage and observations are made throughout the feeding cycle. Also, aspects of the function are studied with markers which are administered in the diet and injected into the blood. The activities of hydrolytic enzymes associated with the different epithelial cells have been studied but these will be the subject of a separate publication dealing with the cytochemistry of the digestive processes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985. M-‘midget’ cells in the hepatopancreas of the shrimp, Penaeus semisulcatus De Haan, 1844 (Crustacea, Decapoda). Crustaceana, 48, 260268.CrossRefGoogle Scholar
Barker, P. L. & Gibson, R., 1977. Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). Journal of Experimental Marine Biology and Ecology, 26, 297324.CrossRefGoogle Scholar
Barker, P. L. & Gibson, R., 1978. Observations on the structure of the mouthparts, histology of the alimentary tract, and digestive physiology of the mud crab Scylla serrata (Forskål) (Decapoda Portunidae). Journal of Experimental Marine Biology and Ecology, 32, 177196.CrossRefGoogle Scholar
Bieger, W., Martin-Achard, A., Bassler, M. & Kern, H. F., 1976. Studies on intracellular transport of secretory proteins in the rat exocrine pancreas. IV. Stimulation by in vivo infusion of caerulein. Cell and Tissue Research, 165, 435453.CrossRefGoogle ScholarPubMed
Boghen, A. & Farley, J., 1974. Phasic activity in the digestive gland cells of the intertidal prosobranch, Littorina saxatilis (Olivi) and relations to the tidal cycle. Proceedings of the Malacological Society of London, 41, 4156.Google Scholar
Bunt, A. H., 1968. An ultrastructural study of the hepatopancreas of Procambarus clarkii (Girard) (Decapoda, Astacidea). Crustaceana, 15, 282288.CrossRefGoogle Scholar
Dall, W., 1975. Indices of nutritional state in western rock lobster, Panulirus longipes (Milne Edwards). II. Gastric fluid constituents. Journal of Experimental Marine Biology and Ecology, 18, 118.CrossRefGoogle Scholar
Davis, L. E. & Burnett, A. L., 1964. A study of growth and cell differentiation in the hepatopancreas of the crayfish. Developmental Biology, 10, 122—153.CrossRefGoogle ScholarPubMed
Eisen, A. Z., Henderson, K. O., Jeffery, J. J. & Bradshaw, R. A., 1973. A collagenolytic protease from the hepatopancreas of the fiddler crab Uca pugilator. Purification and properties. Biochemistry, 12, 18141822.CrossRefGoogle Scholar
Erri-Babu, D., Shyamasundari, K. & Rao, K. H., 1982. Studies on the digestive system of the crab Menippe rumphii (Fabricius) (Crustacea: Brachyura). Journal of Experimental Marine Biology and Ecology, 58, 175—191.CrossRefGoogle Scholar
Gibson, R. & Barker, P. L., 1979. The decapod hepatopancreas. Oceanography and Marine Biology, an Annual Review, 17, 285346.Google Scholar
Herzog, V., 1981. Pathways of endocytosis in secretory cells. Trends in Biochemical Sciences, 6, 319322.CrossRefGoogle Scholar
Hirsch, G. C. & Jacobs, W., 1928. Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. I. Teil: Methodik und Technik. Der Beweis der Periodizität. Zeitschrift für vergleichende Physiologie, 8, 102144.CrossRefGoogle Scholar
Hirsch, G. C. & Jacobs, W., 1930. Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus, II. Teil: Wachstumalsprimärer Faktor des Rhythmus eines polyphasischen organigen Sekretionssystems. Zeitschrift für vergleichende Physiologie, 12, 524557.CrossRefGoogle Scholar
Hopkin, S. P. & Nott, J. A., 1979. Some observations on concentrically structured, intracellular granules in the hepatopancreas of the shore crab Carcinus maenas (L.). Journal of the Marine Biological Association of the United Kingdom, 59, 867877.CrossRefGoogle Scholar
Hopkin, S. P. & Nott, J. A., 1980. Studies of the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the B cells in the hepatopancreas. Journal of the Marine Biological Association of the United Kingdom, 60, 891907.CrossRefGoogle Scholar
Jacobs, W., 1928. Untersuchungen über die cytologie der sekretbildung in der Mitteldarmdrüse von Astacus leptodactylus. Zeitschrift für Zellforschung und mikroskopische Anatomie, 8, 162.CrossRefGoogle Scholar
Loizzi, R. F., 1966. Cellular and Physiological Changes during Secretion in Crayfish Hepatopancreas. Ph.D. Thesis, Iowa State University of Science and Technology, Iowa.Google Scholar
Loizzi, R. F., 1971. Interpretation of crayfish hepatopancreatic function based on fine structural analysis of epithelial cell lines and muscle network. Zeitschrift für Zellforschung und mikroskopische Anatomie, 113, 420440.CrossRefGoogle ScholarPubMed
Mcquiston, R. W., 1969. Cyclic activity in the digestive diverticula of Lasaea rubra (Montagu) (Bivalvia: Eulamellibranchia). Proceedings of the Malacological Society of London, 38, 483493.Google Scholar
Merdsoy, B. & Farley, J., 1973. Phasic activity in the digestive gland cells of the marine prosobranch gastropod Littorina littorea (L.). Proceedings of the Malacological Society of London, 40, 473482.Google Scholar
Owen, G., 1970. The fine structure of the digestive tubules of the marine bivalve Cardium edule. Philosophical Transactions of the Royal Society (B), 258, 245260.Google ScholarPubMed
Owen, G., 1973. The fine structure and histochemistry of the digestive diverticula of the protobranchiate bivalve Nucula sulcata. Proceedings of the Royal Society (B), 183, 249264.Google Scholar
Owen, G., 1974. Feeding and digestion in the Bivalvia. Advances in Comparative Physiology and Biochemistry, 5, 135.CrossRefGoogle ScholarPubMed
Pillai, R. S., 1960. Studies on the shrimp Caridina laevis (Heller). I. The digestive system. Journal of the Marine Biological Association of India, 2, 5774.Google Scholar
Reader, T. A., 1976. Studies on the ultrastructure, histochemistry and cytochemistry of the uninfected digestive gland of Bithynia tentaculata (Mollusca, Gastropoda) and on the ultrastructure of this host organ in snail infected with larval digeneans. Zeitschrift für Parasitenkunde, 50, 11—30.CrossRefGoogle ScholarPubMed
Reddy, A. R., 1938. The cytology of digestion and absorption in the crab Paratelphusa (Oziotelphusa) hydrodromus (Herbst). Proceedings of the Indian Academy of Sciences (B), 8, 171—181.CrossRefGoogle Scholar
Slot, J. W. & Geuze, J. J., 1979. A morphometrical study of the exocrine pancreatic cell in fasted and fed frogs. Journal of Cell Biology, 80, 692707.CrossRefGoogle ScholarPubMed
Studitskii, A. N., 1974. Amitoses in the digestive gland of the shore crab Carcinus maenas. Arkhiv anatomii, gistologii i émbriologii, 67, 1425. [In Russian.]Google Scholar
Sumner, A. T., 1966. The fine structure of the digestive gland cells of Anodonta. Journal of the Royal Microscopical Society, 85, 417—423.CrossRefGoogle Scholar
Sumner, A. T., 1969. The distribution of some hydrolytic enzymes in the cells of the digestive gland of certain lamellibranchs and gastropods. Journal of Zoology, 158, 277291.CrossRefGoogle Scholar
Van Weel, P. B., 1955. Processes of secretion, restitution and resorption in gland of mid-gut (Glandula media intestini) of Atya spinipes Newport (Decapoda, Brachyura). Physiological Zoölogy, 28, 4054.Google Scholar
Van Weel, P. B., 1960. On the secretion of digestive enzymes by the marine crab Thalamita crenata. Zeitschrift für vergleichende Physiologie, 43, 567—577.CrossRefGoogle Scholar