Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T00:40:33.267Z Has data issue: false hasContentIssue false

On the genetic diversity of two species of the genus Ozobranchus (Hirudinida; Ozobranchidae) from the Atlantic and Pacific oceans

Published online by Cambridge University Press:  01 February 2017

C.-T. Tseng
Affiliation:
Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan 202-24, ROC
J-H. Leu
Affiliation:
Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan 202-24, ROC
I.-J. Cheng*
Affiliation:
Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan 202-24, ROC
*
Correspondence should be addressed to: I-J. Cheng, Institute of Marine Biology, National Taiwan Ocean University, Keelung. Taiwan, 202-24, ROC Email: b0107@mail.ntou.edu.tw

Abstract

There are two marine species in the genus Ozobranchus. Ozobranchus branchiatus mainly parasitizes green turtles and O. margoi parasitizes most turtle species. We used sequences for the mitochondrial cytochrome c oxidase subunit I gene (COI sequence analysis), along with morphological diagnosis, to compare the population genetic structures of O. branchiatus and O. margoi collected near Taiwan to those of their populations in the Atlantic. The results provide estimates of the genetic divergence between these leeches in the two regions. Ozobranchus branchiatus had a greater pairwise distance within Taiwan (0.0031–0.0141) than O. margoi (no differences). Phylogenetic tree analysis identified one O. branchiatus clade and one O. margoi clade in Taiwan. The better environmental adaptability and lower host specificity of O. margoi might result in lower genetic divergence among populations.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apakupakul, K., Siddall, M.E. and Burreson, E.M. (1999) Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Molecular Phylogenetics and Evolution 12, 350359.CrossRefGoogle ScholarPubMed
Arthur, K.E. and Balazs, G.H. (2008) A comparison of immature green turtle (Chelonia mydas) diets among seven sites in the main Hawaiian Islands. Pacific Science 62, 205217.CrossRefGoogle Scholar
Bowen, B.W., Abreu-Grobois, F.A., Balazs, G.H., Kamezaki, N., Limpus, C.J. and Ferl, R.J. (1995) Trans-Pacific migrations of the loggerhead turtle (Caretta caretta) demonstrated with mitochondrial DNA markers. Proceedings of the National Academy of Sciences USA 92, 37313734.CrossRefGoogle ScholarPubMed
Bunkley-Williams, L., Williams, E.H., Horrocks, J.A., Horta, H.C., Mignucci-Giannoni, A.A. and Poponi, A.C. (2008) New leeches and diseases for the hawksbill sea turtle and the West Indies. Journal of Comparative Parasitology 75, 263270.CrossRefGoogle Scholar
Carrión-Cortez, J.A., Zárate, P. and Seminoff, J.A. (2010) Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. Journal of the Marine Biological Association of the United Kingdom 90, 10051013.CrossRefGoogle Scholar
Cheng, I.J. (2000) Post-nesting migrations of green turtles at Wan-An Island, Penghu Archipelago, Taiwan. Marine Biology 137, 747754.CrossRefGoogle Scholar
Davies, R.W. (1978) The morphology of Ozobranchus margoi (Apathy) (Hirudinoidea), a parasite of marine turtles. Journal of Parasitology 64, 10921096.CrossRefGoogle ScholarPubMed
Eder, E., Ceballos, A., Martins, S., Perez-Garcia, H., Marin, I., Marco, A. and Cardona, L. (2012) Foraging dichotomy in loggerhead sea turtles Caretta caretta off northwestern Africa. Marine Ecology Progress Series 470, 113122.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Greenblatt, R.J., Work, T.M., Balazs, G.H., Sutton, C.A., Casey, R.N. and Casey, J.W. (2004) The Ozobranchus leech is a candidate mechanical vector for the fibropapilloma-associated turtle herpesvirus found latently infecting skin tumors on Hawaiian green turtles (Chelonia mydas). Virology 321, 101110.CrossRefGoogle ScholarPubMed
Hatase, H., Takai, N., Matsuzawa, Y., Sakamoto, W., Omuta, K., Goto, K., Arai, N. and Fujiwara, T. (2002) Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Marine Ecology Progress Series 233, 273281.CrossRefGoogle Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. and deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270, 313–321.CrossRefGoogle ScholarPubMed
Jarman, S.N. and Elliott, N.G. (2000) DNA evidence for morphological and cryptic Cenozoic speciations in the Anaspididae, ‘living fossils’ from the Triassic. Journal of Evolutionary Biology 13, 624633.CrossRefGoogle Scholar
Kobayashi, D.R., Polovina, J.J., Parker, D.M., Kamezaki, N., Cheng, I.J., Uchida, I., Dutton, P.H. and Balazs, G.H. (2008) Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997–2006): insights from satellite tag tracking and remotely sensed data. Journal of Experimental Marine Biology and Ecology 356, 96114.CrossRefGoogle Scholar
Light, J.E. and Siddall, M.E. (1999) Phylogeny of the leech family Glossiphoniidae based on mitochondrial gene sequences and morphological data. The Journal of Parasitology 85, 815823.CrossRefGoogle ScholarPubMed
MacCallum, W.G. and MacCallum, G.A. (1918) On the anatomy of Ozobranchus branchiatus (Menzies). Bulletin of the American Museum of Nature History 38, 395408.Google Scholar
McGowin, A.E., Truong, T.M., Corbett, A.M., Bagley, D.A., Ehrhart, L.M., Bresette, M.J., Weege, S.T. and Clark, D. (2011) Genetic barcoding of marine leeches (Ozobranchus spp.) from Florida sea turtles and their divergence in host specificity. Molecular Ecology Research 11, 271278.CrossRefGoogle ScholarPubMed
Oceguera-Figueroa, A., Phillips, A.J., Pacheco-Chaves, B. and Siddall, M.E. (2011) Phylogeny of macrophagous leeches (Hirudinea, Clitellata) based on molecular data and evaluation of the barcoding locus. Zoologica Scripta 40, 194203.CrossRefGoogle Scholar
Raj, P.J.S. and Penner, L.R. (1962) Concerning Ozobranchus branchiatus (Menzies, 1791) (Piscicolidae: Hirudinea) from Florida and Sarawak. Transactions of the American Microscopical Society 81, 364371.CrossRefGoogle Scholar
Rawson, P.D., Macnamee, R., Frick, M.G. and Williams, K.L. (2003) Phylogeography of the coronulid barnacle, Chelonibia testudinaria, from loggerhead sea turtles, Caretta caretta. Molecular Ecology 12, 26972706.CrossRefGoogle ScholarPubMed
Sawyer, R.T. (1986) Leech biology and behaviour I: anatomy, physiology, and behaviour. New York, NY: Oxford University Press.Google Scholar
Siddall, M.E. and Burreson, E.M. (1998) Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Molecular Phylogeny and Evolution 9, 156162.CrossRefGoogle ScholarPubMed
Sket, B. and Trontelj, P. (2008) Global diversity of leeches (Hirudinea) in fresh water. Hydrobiologia 595, 129137.CrossRefGoogle Scholar
Sokal, R.R. and Rholf, F.J. (1982) Biometry: the principles and practices of statistics in biological research. San Francisco, CA: W. H. Freeman and Co.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739.CrossRefGoogle ScholarPubMed
Trontelj, P. and Utevsky, S.Y. (2012) Phylogeny and phylogeography of medicinal leeches (genus Hirudo): fast dispersal and shallow genetic structure. Molecular Phylogenetic Evolution 63, 475485.CrossRefGoogle ScholarPubMed
Truong, T.M. (2014) Investigating DAN barcoding potentials and genetic structure in Ozobranchus spp. from Atlantic and Pacific ocean sea turtles. MS thesis. Wright State University, Fairborn, Ohio70.Google Scholar
Tseng, C.T. and Cheng, I.J. (2013) Two new records of marine Ozobranchid leeches (Oligochaete: Ozobranchidae) in Taiwan. Comparative Parasitology 80, 105109.CrossRefGoogle Scholar
Utevsky, S.Y. and Trontelj, P. (2004) Phylogenetic relationships of fish leeches (Hirudinea, Piscicolidae) based on mitochondrial DNA sequences and morphological data. Zoologica Scripta 33, 375385.CrossRefGoogle Scholar
Utevsky, S.Y., Utevsky, A.Y., Schiaparelli, S. and Trontelj, P. (2007) Molecular phylogeny of pontobdelline leeches and their place in the descent of fish leeches (Hirudinea, Piscicolidae). Zoologica Scripta 36, 271280.CrossRefGoogle Scholar
Williams, E.H. Jr., Bunkley-Williams, L., Peters, E.C., Pinto-Rodriguez, B., Matos-Morales, R., Mignucci-Giannoni, A.A., Hall, K.V., Rueda-Almonacid, J.V., Sybesma, J., Bonnelly de Calventi, I. and Boulon, R.H. (1994) An epizootic of cutaneous fibropapillomas in green turtles Chelonia mydas of the Caribbean: part of a panzootic? Journal of Aquatic Animal Health 6, 7078.2.3.CO;2>CrossRefGoogle Scholar
Williams, J.I. and Burreson, E.M. (2006) Phylogeny of the fish leeches(Oligochaeta, Hirudinida, Piscicolidae) based on nuclear and mitochondrialgenes and morphology. Zoologica Scripta 35, 627639.CrossRefGoogle Scholar
Yang, T. (1996) Fauna Sinica Annelida Hirudinea. Beijing: Science Press.Google Scholar