Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T20:58:14.575Z Has data issue: false hasContentIssue false

Phytoplankton composition in a neritic area of the Balearic Sea (Western Mediterranean)

Published online by Cambridge University Press:  02 September 2015

J. Valencia-Vila*
Affiliation:
Instituto Español de Oceanografía, Muelle de Poniente s/n. 07015, Palma de Mallorca, Spain
M.L. Fernández De Puelles
Affiliation:
Instituto Español de Oceanografía, Muelle de Poniente s/n. 07015, Palma de Mallorca, Spain
J. Jansá
Affiliation:
Instituto Español de Oceanografía, Muelle de Poniente s/n. 07015, Palma de Mallorca, Spain
M. Varela
Affiliation:
Instituto Español de Oceanografía, Paseo Alcalde Vázquez, 10. 15001, A Coruña, Spain
*
Correspondence should be addressed to:J. Valencia-Vila, Instituto Español de Oceanografía, Paseo Alcalde Vázquez, 10. 15001, A Coruña, Spain email: joaquin.valencia@co.ieo.es

Abstract

From September 2000 to September 2001 the concentration of chlorophyll a, and the abundance and composition of the phytoplanktonic community was studied in a neritic station of the Mallorca Channel (Western Mediterranean). Sampling was performed approximately every 12 days. Chlorophyll a concentration and phytoplankton abundance reached maxima of 1.79 μg L−l and 352 cells mL−1, respectively. It was a relatively productive period, as a result of the high convective mixing in winter and the prevalence of northern waters during most of the cycle. Phytoplankton proliferations (chlorophyll a concentration >1 mg L−1) were detected in January, February, March and June. Those blooms mainly happened under the influence of northern waters, with the exception of the February proliferation, when mixing conditions were found. During bloom conditions it highlights the presence of coccolithophores as proliferation precursors. During no-bloom situations the phytoplankton community was mainly constituted by nanoplanktonic flagellated forms. The Winter Mixing period was dominated by different groups of nanoflagellates, including coccolithophores, undetermined flagellates and dinoflagellates. However, in the most oligotrophic conditions (from April until November) dinoflagellates were clearly dominant, except in the DCM in summer where diatoms prevailed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

3

Present address: Instituto Español de Oceanografía, Paseo Alcalde Vázquez, 10. 15001, A Coruña, Spain

References

REFERENCES

Alemany, F., Quintanilla, L., Vélez-Belchí, P., García, A., Cortés, D., Rodríguez, J.M., Fernández de Puelles, M.L., González-Pola, C. and López-Jurado, J.L. (2010) Characterization of the spawning habitat of Atlantic bluefin tuna and related species in the Balearic Sea (Western Mediterranean). Progress in Oceanography 86, 2138.Google Scholar
Armstrong, F.A.K., Stern, C.R. and Strickland, J.D.H. (1967) The measurements of upwelling and subsequent biological processes by means of the Technicon Autoanalyzer and associated equipment. Deep Sea Research 14, 381389.Google Scholar
Aubry, F.B., Berton, A., Bastianini, M., Socal, G. and Acri, F. (2004) Phytoplankton succession in a coastal area of the NW Adriatic, over a 10-year sampling period (1990–1999). Continental Shelf Research 24, 97115.Google Scholar
Bode, A., Álvarez-Ossorio, M.T., González, N., Lorenzo, J., Rodríguez, C., Varela, M. and Varela, M.M. (2005) Seasonal variability of plankton blooms in the Ría de Ferrol (NW Spain): II. Plankton abundance, composition and biomass. Estuarine Coastal and Shelf Science 63, 285300.Google Scholar
Brown, L., Sanders, R., Savidge, G. and Lucas, C.H. (2003) The uptake of silica during the spring bloom in the Northeast Atlantic Ocean. Limnology and Oceanography 48, 18311845.Google Scholar
Charles, F., Lantoine, F., Brugel, S., Chrétiennot-Dinet, M.J., Quiroga, I. and Rivière, B. (2005) Seasonal survey of the phytoplankton biomass, composition and production in a littoral NW Mediterranean site, with special emphasis on the picoplanktonic contribution. Estuarine Coastal and Shelf Science 65, 199212.Google Scholar
Duarte, C.M., Agustí, S., Kennedy, H. and Vaqué, D. (1999) The Mediterranean climate as a template for the Mediterranean marine ecosystems: the example of the sortheast Spanish littoral. Progress in Oceanography 44, 245277.Google Scholar
Egge, J.K. and Aksnes, D.L. (1992) Silicate as regulating nutrient in phytoplankton competition. Marine Ecology Progress Series 83, 281289.Google Scholar
Eppley, R.W., Rogers, J.N. and McCarthy, J.J. (1969) Half saturation constant for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography 14, 912920.Google Scholar
Estrada, M., Latasa, M., Emelianov, M., Gutiérrez-Rodríguez, A., Fernández-Castro, B., Isern-Fontanet, J., Mouriño-Carballido, B., Salat, J. and Vidal, M. (2014) Seasonal and mesoscale variability of primary production in the deep winter-mixing region of the NW Mediterranean. Deep-Sea I 94, 4561.Google Scholar
Estrada, M., Marrasé, C., Latasa, M., Berdalet, E., Delgado, M. and Riera, T. (1993) Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Marine Ecology Progress Series 92, 289300.Google Scholar
Estrada, M. and Salat, J. (1989) Phytoplankton assemblages of deep and surface water layers in a Mediterranean frontal zone. In Ros, J.D. (ed.) Topics in marine biology. Barcelona: Scientia Marina, Volume 53, pp. 203214.Google Scholar
Estrada, M., Vives, F. and Alcaraz, M. (1985) Life and the productivity of the Open Sea. In Margalef, R. (ed.) Western Mediterranean. Oxford: Pergamon Press, pp. 149197.Google Scholar
Fernández de Puelles, M.L., Alemany, F. and Jansá, J. (2007) Zooplankton time-series in the Balearic Sea (Western Mediterranean): variability during the decade 1994–2003. Progress in Oceanography 74, 329354.Google Scholar
Fernandez de Puelles, M.L., Jansá, J., Gomis, C., Gras, D. and Amengual, B. (1997) Variación de las principales variables oceanográficas y planctónicas en una estación nerítica del mar Balear. Boletín del Instituto Español de Oceanografía 13, 1333.Google Scholar
Fernández de Puelles, M.L., Gras, D. and Hernández-León, S. (2003) Annual cycle of zooplankton biomass, abundance and species composition in the neritic area of the Balearic Sea, Western Mediterranean. Pubblicazioni della Stazione Zoologica di Napoli I Marine Ecology 23, 117.Google Scholar
Fernández de Puelles, M.L. and Molinero, J.C. (2007) North Atlantic climate control on plankton variability in the Balearic Sea, Western Mediterranean. Geophysical Research Letters 34, L04608. doi: 10.1029/2006GL028354.Google Scholar
Fernández de Puelles, M.L., Valencia, J., Jansá, J. and Morillas, A. (2004) Hydrographical characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001. ICES Journal of Marine Science 61, 654666.Google Scholar
Guerreiro, C., Oliveira, A., Stigter, H., Cachao, M., , C., Borges, C., Cros, L., Santos, A., Fortuño, J.M. and Rodrigues, A. (2013) Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Continental Shelf Research 59, 6583.Google Scholar
Gutiérrez-Rodríguez, A., Latasa, M., Estrada, M, Vidal, M and Marrasé, C. (2010) Carbon fluxes through major phytoplankton groups during the spring bloom and post-bloom in the Northwestern Mediterranean Sea. Deep-Sea Research I 57, 486500.Google Scholar
Holm-Hansen, O., Lorenzen, J., Holmes, R.W. and Strickland, J.D.H. (1965) Fluorometric determination of chlorophyll. ICES Journal du Conseil 30, 315.Google Scholar
Iglesias-Rodríguez, M.D., Brown, C.W., Doney, S.C., Kleypas, J., Kolber, D., Kolber, Z., Hayes, P.K. and Falkowski, P.G. (2002) Representing key phytoplankton functional groups in ocean carbon cycle mode: Coccolithophorids. Global Biogeochemical Cycles 16, 119.Google Scholar
Jansá, J. (2008) ¿És el mar Balear un mar oligotròfic?. Sintesi sobre les dades de clorofil-la fitoplànctonica obtinguda des de 1974 al Centre Oceanogràfic de Balears (IEO). Estudis Baleàrics (IEB) 88/89, 125136.Google Scholar
Legendre, L. and Rassoulzadegan, F. (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41, 153172.Google Scholar
López-Jurado, J.L., García Lafuente, J. and Álvarez, A. (1996) Water exchanges in the Balearic Sea. CIESM Science Series n°2 Bulletin de l'Institut océanographique, Monaco 17, 4163.Google Scholar
Margalef, R. (1958) Temporal succession and spatial heterogeneity in phytoplankton. In Buzzi-Traverso, A.E. (ed.) Perspectives in marine biology. Berkeley, CA: University of California Press, pp. 323349.Google Scholar
Margalef, R. (1963a) El ecosistema pelágico de un área costera del Mediterráneo Occidental. Memorias de la Real Academia de Ciencias y Artes de Barcelona 35, 148.Google Scholar
Margalef, R. (1963b) Modelos simplificados del ambiente marino para el estudio de la sucesión y distribución del fitoplancton y del valor indicador de sus pigmentos. Investigaciones Pesqueras 23, 1152.Google Scholar
Mergulhao, L.P., Mohan, R., Murty, V.S.N., Guptha, M.V.S. and Sinha, D.K. (2006) Coccolithophores from the central Arabian Sea: sediment trap results. Journal of Earth System Science 115, 415428.Google Scholar
Nogueira, E., Ibanez, F. and Figueiras, F.G. (2000) Effect of meteorological and hydrographic disturbances on the microplankton community structure in the Ría de Vigo (NW Spain). Marine Ecology Progress Series 203, 2345.Google Scholar
Oguz, T. and Merico, A. (2006) Factors controlling the summer Emiliania huxleyi bloom in the Black Sea: a modeling study. Journal of Marine Systems 59, 173188.Google Scholar
Paasche, E. (2002) A review of the coccolithophorid Emilania huxleyi (Prymnesiophyceae), with particular reference to growth, coccoltih formation, and calcification-photosynthesis interactions. Phycologia 40, 503529.Google Scholar
Pinot, J.M., López-Jurado, J.L. and Riera, M. (2002) The CANALES experiment (1996–1998). Interannual, seasonal, and mesoscale variability of the circulation in the Balearic Channels. Progress in Oceanography 55, 335370.Google Scholar
Puigserver, M. (2003) Aspectes ecòlogics i taxonòmics del fitoplàncton a zones costaneres de la Mediterrània. PhD thesis. Universitat de les Illes Balears, Palma de Mallorca, Spain.Google Scholar
Ros, M. and Miracle, R. (1984) Variación estacional del fitoplancton del Mar Menor y su relación con la de un punto próximo en el Mediterráneo. Limnética 1, 3242.Google Scholar
Silva, A., Palma, S. and Moita, M.T. (2008) Coccolithophores in the upwelling waters of Portugal: four years of weekly distribution in Lisbon bay. Continental Shelf Research 28, 26012613.Google Scholar
Siokou-Frangou, I., Christaki, U., Mazzocchi, M.G., Montresor, M., Ribera d'Alcalà, M., Vaqué, D. and Zingone, A. (2009) Plankton in the open Mediterranean Sea: a review. Biogeosciences Discussions 6, 11187111293.Google Scholar
Smayda, T.J. (1980) Phytoplankton species succession. In Morris, I. (ed.) The physiological ecology of phytoplankton. Oxford: Blackwell Scientific, pp. 493570.Google Scholar
Smayda, T.J. (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42, 11371153.Google Scholar
Sournia, A.E. (ed). (1978) Phytoplankton manual. Monographs on Oceanographic Methodology. Volume 6. Paris: UNESCO.Google Scholar
Sprengel, C., Baumann, K.H., Henderiks, J., Henrich, R. and Neuer, S. (2002) Modern coccolithophore and carbon sedimentation along a productivity gradient in the Canary Islands Region: seasonal export production and surface accumulation rates. Deep-Sea Research II 49, 35773598.Google Scholar
Tyrrell, T. and Merico, A. (2004) Emiliania huxleyi: bloom observations and the conditions that induce them. In Thierstein, H.R. and Young, J.R. (eds) Coccolithophores from molecular processes to global impact. New York, NY: Springer-Verlag, pp. 7597.Google Scholar
UNESCO (1966) Determination of photosynthetic pigment. Monographs on Oceanographic Methodology. Volume 1. Paris: SCOR/UNESCO, UNESCO, pp. 1118.Google Scholar
Valencia-Vila, J. (2013) Variación estacional del fitoplancton en una estación nerítica del Canal de Mallorca (Mediterráneo Occidental). PhD. thesis. A Coruña, Galicia, Spain: Universidade da Coruña.Google Scholar
Varela, M. and Prego, R. (2003) Hydrography and phytoplankton in an isolated and non-pristine ría area: the A Coruña Harbor (NW Spain). Acta Oecologica 24, 113124.Google Scholar
Van Oostende, N., Harlay, J., Vannelslander, B., Vyverman, W. and Sabbe, K. (2012) Phytoplankton community dynamics during late spring coccolithophore blooms at the continental margin of the Celtic Sea (North East Atlantic, 2006–2008). Progress in Oceanography 104, 116.Google Scholar