Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T00:05:36.090Z Has data issue: false hasContentIssue false

Ultrastructure of cells associated with excavation of calcium carbonate substrates by boring sponges

Published online by Cambridge University Press:  11 May 2009

Shirley A. Pomponi
Affiliation:
University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, Florida 33149

Extract

Boring sponges excavate calcium carbonate substrates by chemical and mechanical methods. The chemical phase of excavation is accomplished at the cellular level by a localized secretion (possibly an acid or an enzyme) at the cell-substrate interface (Cotte, 1902; Nassonow, 1883, 1924; Warburton, 1958; Rützler & Rieger, 1973; Cobb, 1969, 1971, 1975). Chemical etching detaches a chip of calcium carbonate (about 40–60 µm diameter) which is then mechanically removed from the substrate through the sponge tissue and out through the excurrent canal system. Only 2–3% of the substrate is dissolved by the etching cells (Rützler & Rieger, 1973), while the rest is removed as characteristically shaped chips. Recent studies of the mechanism of sponge boring have denned (using light microscopy) the spatial relationships sponge cells establish with the substrate (Cobb, 1971), identified (using transmission electron microscopy) the cell type (etching cell) responsible for chemical etching (Rützler & Rieger, 1973), and described (using scanning electron microscopy) the architectural nature of substrate destruction by sponges (Cobb, 1969, 1971, 1975; Rützler & Rieger, 1973; Pomponi, 1976, 1977, Ph.D. Thesis, University of Miami).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borojević, R. & Lévi, C., 1964. Etude au microscope électronique des cellules de l'éponge: Ophlitaspongia seriata (Grant) au cours de la réorganisation apres dissociation. Zeitschrift fur Zellfürschung und mikroskopische Anatomie, 64, 708725.CrossRefGoogle Scholar
Boury-Esnault, N., 1977. A cell type in sponges involved in the metabolism of glycogen: the gray cells. Cell and Tissue Research, 175, 523539.CrossRefGoogle Scholar
Cobb, W. R., 1969. Penetration of calcium carbonate substrates by the boring sponge, Cliona. American Zoologist, 9, 783790.CrossRefGoogle Scholar
Cobb, W. R., 1971. Penetration of Calcium Carbonate Substrata by Cliona celata, a Marine Burrowing Sponge. Ph.D. Thesis, Kingston, R.I., University of Rhode Island.Google Scholar
Cobb, W. R., 1975. Fine structural features of destruction of calcareous substrata by the burrowing sponge Cliona celata. Transactions of the American Microscopical Society, 94, 197202.CrossRefGoogle Scholar
Cotte, J., 1902. Note sur le mode de perforation des Cliones. Compte rendu des séances de la Société de biologie, 54, 636637.Google Scholar
Donadey, C. & Vacelet, J., 1977. Les cellules à inclusions de l'éponge Pleraplysilla spinifera (Schulze) (Démosponges Dendrocératides). Archives de zoologie expérimentale et générale, 118, 273284.Google Scholar
Göthlin, G. & Ericsson, J. L. E., 1971. Fine structural localization of acid phosphomonoesterase in the brush border region of osteoclasts. Histochemie, 28, 337344.CrossRefGoogle ScholarPubMed
Hancox, N. M., 1972. The osteoclast. In The Biochemistry and Physiology of Bone, vol. 1 (ed. Bourne, G. H.), pp. 4567. New York: Academic Press.CrossRefGoogle Scholar
Holtrop, M. E. & King, G. J., 1977. The ultrastructure of the osteoclast and its functional implications. Clinical Orthopaedics and Related Research, 123, 177196.Google Scholar
Lucht, U., 1972 a. Absorption of peroxidase by osteoclasts as studied by electron microscope histochemistry. Histochemie, 29, 274286.CrossRefGoogle ScholarPubMed
Lucht, U., 1972 b. Cytoplasmic vacuoles and bodies of the osteoclast: an electron microscope study. Zeitschrift für Zellforschung und mikroskopische Anatomie, 135, 229244.CrossRefGoogle ScholarPubMed
Lucht, U., 1972 c. Osteoclasts and their relationship to bone as studied by electron microscopy. Zeitschrift für Zellforschung und mikroscopische Anatomie, 135, 211228.CrossRefGoogle ScholarPubMed
Mercer, E. H. & Birbeck, M. S. C., 1966. Electron Microscopy: A Handbook for Biologists. 102 pp. Oxford: Blackwell Scientific Publications.Google Scholar
Nassonow, N., 1883. Zur Biologie und Anatomie der Clione. Zeitschrift für wissenschaftliche Zoologie, 39, 295308.Google Scholar
Nassonow, N., 1924. Sur l'éponge perforante Clione stationis et le procédé du creusement des galeries dans les valves des huitres. Dokladӯ Akademii nauk SSSR (ser. A), 1924, 113115.Google Scholar
Pang, R. K., 1973. The systematics of some Jamaican excavating sponges (Porifera). Postilla, 161, 175.CrossRefGoogle Scholar
Pavans, De Ceccatty M., Thiney, Y. & Garrone, R., 1970. Les bases ultrastructurales des communications intercellulaires dans les oscules de quelques éponges. Symposia of the Zoological Society of London, no. 25, 449466.Google Scholar
Pomponi, S. A., 1976. An ultrastructural study of boring sponge cells and excavated substrata. In Proceedings of the 9th Annual SEM Symposium, part VIII (ed. Johari, O.), pp. 569575. Chicago: IIT Research Institute.Google Scholar
Pomponi, S. A., 1977. Etching cells of boring sponges: an ultrastructural analysis. In Proceedings of the Third International Coral Reef Symposium, vol. 2, Geology (ed. Taylor, D. L.), pp. 485490. Miami.Google Scholar
Pomponi, S. A., 1979. Cytochemical studies of acid phosphatase in etching cells of boring sponges. Journal of the Marine Biological Association of the United Kingdom, 59, 785789.CrossRefGoogle Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208.CrossRefGoogle ScholarPubMed
Rützler, K., 1971. Bredin-Archbold-Smithsonian Biological Survey of Dominica: burrowing sponges, genus Siphonodictyon Bergquist, from the Caribbean. Smithsonian Contributions to Zoology, no. 77, 37 pp.Google Scholar
Rützler, K., 1974. The burrowing sponges of Bermuda. Smithsonian Contributions to Zoology, no. 165, 32 pp.Google Scholar
Rützler, K. & Rieger, G., 1973. Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Marine Biology, 21, 144162.CrossRefGoogle Scholar
Taylor, D. L., 1974. Symbiotic marine algae: taxonomy and biological fitness. In Symbiosis in the Sea (ed. Vernberg, W. B.), pp. 245262. Columbia: University of South Carolina Press.Google Scholar
Warburton, F. E., 1958. The manner in which the sponge Cliona bores in calcareous objects. Canadian Journal of Zoology, 36, 555562.CrossRefGoogle Scholar