Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T23:16:15.520Z Has data issue: false hasContentIssue false

Adhesion of cypris larvae of the barnacle, Balanus balanoides, to clean and arthropodin treated surfaces

Published online by Cambridge University Press:  16 October 2009

A. B. Yule
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd, LL59 5EH
D. J. Crisp
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge, Gwynedd, LL59 5EH

Abstract

Measurements were made of the strength of temporary attachment of the cypris larvae of Balanus balanoides using a sensitive micro-balance. The strength of adhesion on arthropodin treated slate panels exceeded that on clean panels and the measured forces increased as the season progressed. The observed maximum cyprid attachment strength reached 3·8 × 105 N m−2, considerably less than the bond strength of a commercial epoxy adhesive (107 N m−2) but of the same order as the force required to remove limpets (Patella) from a slate substrate. The results are discussed in the context of substrate recognition by barnacle cyprids and the possible mechanisms of adhesion involved.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayne, B. L., 1969. The gregarious behaviour of the larvae of Ostrea edulis L. at settlement. Journal of the Marine Biological Association of the United Kingdom, 49, 327356.CrossRefGoogle Scholar
Brooks, D. E., Millar, J. S., Seamen, G. V. F. & Vassar, P. S., 1967. Some physico-chemical factors relevant to cellular interactions. Journal of Cell Physiology, 69, 155168.CrossRefGoogle Scholar
Crisp, D. J., 1955. The behaviour of barnacle cyprids in relation to water movement over a surface. Journal of Experimental Biology, 32, 569590.CrossRefGoogle Scholar
Crisp, D. J., 1965. Surface chemistry, a factor in the settlement of marine invertebrate larvae. Botanica Gothoburgensia, 3, 5165.Google Scholar
Crisp, D. J., 1967. Chemical factors inducing settlement in Crassostrea virginica. Journal of Animal Ecology, 36, 329335.CrossRefGoogle Scholar
Crisp, D. J., 1974. Factors influencing the settlement of marine invertebrate larvae. In Chemoreception in Marine Organisms (ed. Grant, P. T. and Mackie, A. M.), pp. 177265. Academic Press.Google Scholar
Crisp, D. J., 1975. Surface chemistry and life in the sea. Chemistry and Industry, 5, 187193.Google Scholar
Crisp, D. J. & Meadows, P. S., 1962. The chemical basis of gregariousness in cirripedes. Proceedings of the Royal Society of London (B), 156, 500520.Google Scholar
Crisp, D. J. & Meadows, P. S., 1963. Adsorbed layers: the stimulus to settlement in barnacles. Proceedings of the Royal Society of London (B), 158, 364387.Google Scholar
Crisp, D. J. & Stubbings, H. G., 1957. The orientation of barnacles to water currents. Journa of Animal Ecology, 26, 179196.CrossRefGoogle Scholar
Dahl, F., 1885. Die fussdrüsen der insekten. Archiv für mikroskopische Anatomie und Entwicklung smechanik, 25, 236263.CrossRefGoogle Scholar
Dewitz, H., 1883. Ueber die fortbewgung der thiere an senkrechten glatten flächen vermittelst eins secretes. Archiv für die gesamte Physiologie des Menschen und der Tiere, 33, 440481.Google Scholar
Dewitz, H., 1884. Über die fortbewegung der thiere an senkrechten glatten flächen vermittelst eines secretes. Zoologischer Anzeiger, 7, 400405.Google Scholar
Gee, J. M., 1965. Chemical Stimulation of settlement in larvae of Spirorbis rupestris (Serpulidae). Animal Behaviour, 13, 181186.CrossRefGoogle Scholar
Gibson, P. H. & Nott, J. A., 1971. Concerning the fourth antennular segment of the cypris larvae of Balanus balanoides. In Proceedings of the Fourth European Marine Biology Symposium, Bangor, 1969 (ed. Crisp, D. J.), pp. 227236. Cambridge University Press.Google Scholar
Gillett, J. D. & Wigglesworth, V. B., 1932. The climbing organ of an insect. Proceedings of the Royal Society of London (B), 111, 364375.Google Scholar
Gray, J. S., 1966. The attractive factor of intertidal sands to Protodrilus symbioticus. Journal of the Marine Biological Association of the United Kingdom, 46, 627645.CrossRefGoogle Scholar
Gray, J. S., 1967 a. Substrate selection by the archianellid Protodrilus hypoleucus Armenante. Journal of Experimental Marine Biology and Ecology, 1, 4754.CrossRefGoogle Scholar
Gray, J. S., 1967 b. Substrate selection by the archianelli Protodrilus rubropharyngeus Jägersten. Helgoländer wissenschaftliche Meeresuntersuchungen, 15, 253269.CrossRefGoogle Scholar
Grenon, J.-F. & Walker, G., 1980. Biochemical and rheological properties of the pedal mucus of the limpet, Patella vulgata L. Comparative Biochemistry and Physiology, 66B, 457458.Google Scholar
Grenon, J.-F. & Walker, G., 1981. The tenacity of the limpet, Patella vulgata L.: an experimental approach. Journal of Experimental Biology and Ecology, 54, 277308.CrossRefGoogle Scholar
Kaelble, D. H., 1959. Theory and analysis of peel adhesion: mechanism and mechanics. Transactions of the Society of Rheology, 3, 161180.CrossRefGoogle Scholar
Kaelble, D. H., 1960. Theory and analysis of peel adhesion: band stresses and distributions. Transactions of the Society of Rheology, 4, 4573.CrossRefGoogle Scholar
Larman, V. N., Gabbott, P. A. & East, J., 1982. Physico-chemical properties of the settlement factor proteins from the barnacle Balanus balanoides. Comparative Biochemistry and Physiology, 72B, 329338.Google Scholar
Nott, J. A. & Foster, B. A., 1969. On the structure of the antennular attachment organ of the cypris larvae of Balanus balanoides (L.). Philosophical Transaction of the Royal Society 256, 115134.Google Scholar
Ritz, D. A., 1974. [Quoted in Crisp, D. J., 1974.] Factors influencing the settlement of marine invertebrate larvae. In Chemoreception in Marine Organisms (ed. Grant, P. T. and Mackie, A. M.), pp. 177265. Academic Press.Google Scholar
Simmermacher, G., 1884. Untersuchungen über haftapparate an tarsalgliedern von insekten. Zeitschrift für wissenschaftliche Zoologie, 40, 481556.Google Scholar
Trim, A. R., 1941. Studies on the chemistry of the insect cuticle. I. Some general observations on certain arthropod cuticles with special reference to the characterisation of the proteins. Biochemical Journal, 35, 10881098.CrossRefGoogle Scholar
Wake, W. C., 1976. Adhesion and the Formulation of Adhesives. 325 pp. London: Applied Science Publishers Ltd.Google Scholar
Weiss, L., 1961 a. Studies on cellular adhesion in tissue cultures. IV. The alteration of substrata by cell surfaces. Experimental Cell Research, 25, 504517.CrossRefGoogle ScholarPubMed
Weiss, L., 1961 b. The measurement of cell adhesion. Experimental Cell Research, supplement 8, 141153.CrossRefGoogle ScholarPubMed
West, T., 1862. The foot of the fly; its structure and action elucidated by comparison with the feet of other insects. Transactions of the Linnean Society of London, 23, 393421.CrossRefGoogle Scholar
Williams, G. B., 1964. The effects of extracts of Fucus serratus in promoting the settlement of larvae of Spirorbis borealis (Polychaeta). Journal of the Marine Biological Association of the United Kingdom, 44, 397414.CrossRefGoogle Scholar
Williams, G. B., 1965. Observations on the behaviour of the planula larvae of Clava squamata. Journal of the Marine Biological Association of the United Kingdom, 45, 257273.CrossRefGoogle Scholar
Wilson, D. P., 1968. The settlement behaviour of the larvae of Sabellaria alveolata (L.). Journal of the Marine Biological Association of the United Kingdom, 48, 387435.CrossRefGoogle Scholar
Wilson, D. P., 1970 a. Additional observations on larval growth and settlement of Sabellaria alveolata. Journal of the Marine Biological Association of the United Kingdom, 50, 131.CrossRefGoogle Scholar
Wilson, D. P., 1970 b. The larvae of Sabellaria spinulosa and their settlement behaviour. Journal of the Marine Biological Association of the United Kingdom, 50, 3352.CrossRefGoogle Scholar