Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T05:01:42.706Z Has data issue: false hasContentIssue false

Aerial respiration in Balanus balanoides

Published online by Cambridge University Press:  11 May 2009

Felicity Grainger
Affiliation:
Department of Zoology, Queen Mary College, University of London
G. E. Newell
Affiliation:
Department of Zoology, Queen Mary College, University of London

Extract

Observation of Balanus balanoides on the shore at Whitstable shows that at all tidal levels a percentage of the animals maintain a connexion between the mantle cavity and the air by means of a minute aperture or pneumostome. A higher percentage of animals at lower shore levels have a pneumostome than those nearer the top of the shore.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, H. & Barnes, M., 1957. Resistance to desiccation in intertidal barnacles. Science, Vol. 126, p. 358.CrossRefGoogle Scholar
Barnes, H. 1958. A note on the opening response of Balanus balanoides (L.) in relation to salinity and certain inorganic ions. Veröff. Inst. Meeresforsch. Bremerhaven, 5 pp. 160–4.Google Scholar
Barnes, H. 1964. Some relations between the habitat, behaviour and metabolism on exposure to air of the high-level intertidal cirripede Chthamalus depressus (Poli). Helgolander wiss. Meeresunters, Bd. 10, pp. 1928.CrossRefGoogle Scholar
Barnes, H., Finlayson, D. M. & Piatigorsky, J., 1963. The effect of desiccation and anaerobic conditions on the behaviour, survival and general metabolism of three common cirripedes. J. Anim. Ecol., Vol. 32, pp. 233–52.CrossRefGoogle Scholar
Briggs, R., Dyke, G. V. & Knowles, G., 1958. Use of the wide-bore droppingmercury electrode for long-period recording of concentration of dissolved oxygen. Analyst, Vol. 83, pp. 304–11.CrossRefGoogle Scholar
Crisp, D. J. & Southward, A. J., 1961. Different types of cirral activity of barnacles. Phil. Trans. R. Soc., B, Vol. 243, pp. 271308.Google Scholar
Darwin, C., 1854. A Monograph on the Sub-class Cirripedia: Balanidae, Verrucidae, etc. London: Ray Society.Google Scholar
Monterosso, B., 1928. Studii cirrepedologici. III. Persistenza dei fenomeni respiratori nei ctamalini mantenuti in ambiente subaereo. Boll. Soc. Biol. sper., T. 3, pp. 1067–70.Google Scholar
Monterosso, B. 1930. Studii cirrepedologici. VI. Sul comportamento di ‘Chthamalus stellatus’ in diverse condizione sperimentale. R.C. Accad. Lincei, Ser. 6, T. II, pp. 501–5.Google Scholar
Roughton, F. J. W. & Scholander, P. F., 1943. Micro-gasometric estimation of the blood gases. I. Oxygen. J. biol. Chem. Vol. 148, pp. 541–50.CrossRefGoogle Scholar
Scholander, P. F. & Roughton, F. J. W., 1942. A simple micro-gasometric method of estimating carbon monoxide in blood. J. ind. Hyg. Toxicol., Vol. 24, pp. 218–21.Google Scholar