Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T12:39:41.088Z Has data issue: false hasContentIssue false

Annual dynamics of glycogen, lipids and proteins during the sexual cycle of Perna perna (Mollusca: Bivalvia) from south-western Morocco

Published online by Cambridge University Press:  09 July 2009

S. Benomar*
Affiliation:
Laboratory of Aquatic Ecosystems: Marine and Continental Field, Department of Biology, Faculty of Science, Ibn Zohr University, BP 8106, 80000 Agadir, Morocco
K. Costil
Affiliation:
UMR IFREMER Physiologie et Ecophysiologie des Mollusques Marins, IFR ICORE, Université de Caen, Esplanade de la Paix, 14032 Caen, France
F. El Filali
Affiliation:
Laboratory of Aquatic Ecosystems: Marine and Continental Field, Department of Biology, Faculty of Science, Ibn Zohr University, BP 8106, 80000 Agadir, Morocco
M. Mathieu
Affiliation:
UMR IFREMER Physiologie et Ecophysiologie des Mollusques Marins, IFR ICORE, Université de Caen, Esplanade de la Paix, 14032 Caen, France
A. Moukrim
Affiliation:
Laboratory of Aquatic Ecosystems: Marine and Continental Field, Department of Biology, Faculty of Science, Ibn Zohr University, BP 8106, 80000 Agadir, Morocco
*
Correspondence should be addressed to: S. Benomar, Biological Rhythm Research Team, Department of Biology, Faculty of Science, Mohammed V-Agdal University, BP 1014, Avenue Ibn Battouta, 10000 Rabat, Morocco email: sbenomar@fsr.ac.ma

Abstract

Field investigations on Perna perna were carried out in 1999 in an unpolluted site (Cap Ghir) and a wastewater-polluted site (Anza) to determine the contents of glycogen, lipids and proteins in mussel samples collected every month. Sample analyses were made using the entire soft masses of male and female mussels or their gonads only. Compared to unpolluted P. perna, the glycogen and lipid concentrations found in polluted mussels showed significantly quantitative variations throughout the year; in contrast, insignificant differences were only found for protein concentrations. Female gonads contained higher rates of lipids than male ones, whereas protein contents were similar. In contrast, in entire mussels, females were richer than males, whatever the biochemical parameter considered. Apart from protein rates in December, most of highest concentrations were noted from October to November. Contrary to unpolluted mussels (of which storage components were constituted by glycogen and lipids), a different reserve strategy, mainly based on the use of lipids, followed by that of proteins would exist in the P. perna from the polluted bed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayne, B.L. (1976) Marine mussels, their ecology and physiology. Cambridge: Cambridge University Press, 356 pp.Google Scholar
Bayne, B.L., Bubel, A., Gabbott, P.A., Livinstone, D.R., Lowe, D.M. and Moore, M.N. (1982) Glycogen utilisation and gametogenesis in Mytilus edulis (L.). Marine Biology Letters 3, 89105.Google Scholar
Benomar, S., Bouhaimi, A., El Hamidi, F., Mathieu, M., Ouichou, A. and Moukrim, A. (2006) Cycle de reproduction de la moule africaine Perna perna (Mollusca, Bivalvia) dans la baie d'Agadir: impact des rejets d'eaux usées domestiques et industrielles. Biologie et Santé 6, 2536.Google Scholar
Berraho, A. (1998) Ressources halieutiques et potentialités aquacoles au Maroc. Expo' 98, Maroc, 82 pp.Google Scholar
Berthelin, C., Kellner, K. and Mathieu, M. (2000a) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycles (West Coast of France). Comparative Biochemistry and Physiology (B) 125, 359369.CrossRefGoogle ScholarPubMed
Berthelin, C., Kellner, K. and Mathieu, M. (2000b) Histological characterization and glucose incorporation into glycogen of the Pacific oyster Crassostrea gigas storage cells. Marine Biotechnology 2, 136145.CrossRefGoogle ScholarPubMed
Bligh, E.G. and Dyer, W.F. (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 47, 911917.CrossRefGoogle Scholar
Bradford, M.M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of the protein–dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Costil, K., Royer, J., Ropert, M., Soletchnik, P. and Mathieu, M. (2005) Spatio-temporal variations in biological performances and summer mortality of the Pacific oyster Crassostrea gigas in Normandy (France). Helgoland Marine Research 59, 286300.CrossRefGoogle Scholar
Deslous-Paoli, J.M., Wolowicz, M. and Boromthanarat, S. (1991) Les réserves énergétiques de Mytilus edulis: comparaison des stratégies développées dans la baie de Gdansk (Pologne) et le bassin de Marennes-Oléron (France). Haliotis 21, 1928.Google Scholar
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analytical Chemistry 26, 350356.CrossRefGoogle Scholar
El Hamidi, F., Banaoui, A., Azdi, M., Kaaya, A., Zekhnini, A. and Moukrim, A. (2003) Utilisation de la réponse de quatre biomarqueurs d'exposition chez les bivalves Perna perna et Donax trunculus pour l'évaluation de la pollution dans la baie d'Agadir (Sud du Maroc). Haliotis 32, 5160.Google Scholar
Fernàndez-Reiriz, M.J., Pérez-Camacho, A., Delgado, M. and Labarta, U. (2007) Dynamics of biochemical components, lipid classes and energy values on gonadal development of R. philippinarum associated with the temperature and ingestion rate. Comparative Biochemistry and Physiology (A) 147, 10531059.CrossRefGoogle ScholarPubMed
Gabe, M. (1968) Techniques histologiques. Paris: Masson and Cie editors, 1113 pp.Google Scholar
Gabbott, P.A. (1975) Storage cycle in marine bivalve molluscs: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. In Barnes, H. (ed.) Proceedings of the Ninth European Marine Biology Symposium, Oban, 2–8 October 1974. Aberdeen: Aberdeen University Press, pp. 191211.Google Scholar
Id Halla, M., Bouhaimi, A., Zekhnini, A., Narbonne, J.F., Mathieu, M. and Moukrim, A. (1997) Etude du cycle de reproduction de deux moules Perna perna (Linné, 1785) et Mytilus galloprovincialis (Lamarck, 1819) dans la baie d'Agadir (Sud du Maroc). Haliotis 26, 5162.Google Scholar
Kaaya, A., Najimi, S., Ribera, D., Narbonne, J.F. and Moukrim, A. (1999) Characterization of glutathione S-transferases (GST) activities in Perna perna and Mytilus galloprovincialis used as biomarker of pollution in the Agadir marine bay (South of Morocco). Bulletin of Environmental Contamination and Toxicology 62, 923929.CrossRefGoogle ScholarPubMed
Ketata, I., Denier, X., Hamza-Chaffai, A. and Minier, C. (2008) Endocrine-related reproductive effects in molluscs. Comparative Biochemistry and Physiology (C) 147, 261270.Google ScholarPubMed
Lee, S.Y. (1986) Growth and reproduction of the green mussel Perna viridis (L.) (Bivalvia: Mytilacea) in contrasting environments in Hong Kong. Asian Marine Biology 3, 111127.Google Scholar
Lowe, D.M., Moore, M.N. and Bayne, B.L. (1982) Aspect of gametogenesis in the marine mussel Mytilus edulis L. Journal of the Marine Biological Association of the United Kingdom 62, 114145.CrossRefGoogle Scholar
Lowe, D.M. and Pipe, R.K. (1987) Mortality and quantitative aspects of storage cell utilization in mussels Mytilus edulis following exposure to diesel oil hydrocarbons. Marine Environmental Research 22, 243251.CrossRefGoogle Scholar
Lubet, P. (1959) Recherches sur le cycle sexuel et l'émission des gamètes chez les Mytilidés et les Pectinidés. Revue des Travaux de l'Institut des Sciences et des Pêches Maritimes 23, 387548.Google Scholar
McDowell, J.E., Lancaster, B.A., Leavitt, D.F. and Rantamaki, P. (1999) The effects of lipophilic organic contaminants on reproductive physiology and disease processes in marine bivalve molluscs. Limnology and Oceanography 44, 903909.CrossRefGoogle Scholar
Marsh, J.B. and Weinstein, D.B. (1966) Simple charring method for determination of lipids. Journal of Lipid Research 7, 574576.CrossRefGoogle ScholarPubMed
Mathieu, M. and Lubet, P. (1993) Storage tissue metabolism and reproduction in marine bivalves: a brief review. Invertebrate Reproduction and Development 23, 123129.CrossRefGoogle Scholar
Moukrim, A., Id Halla, M., Kaaya, A., Bouhaimi, A., Benomar, S. and Mathieu, M. (2008) Pattern of reserve storage of the two mussel species Perna perna and Mytilus galloprovincialis living on Moroccan coasts: annual variation and effect of pollution. Iberus 26, 1728.Google Scholar
Mouneyrac, C., Linot, S., Amiard, J.-C., Amiard-Triquet, C., Métais, I., Durou, C., Minier, C. and Pellerin, J. (2008) Biological indices, energy reserves, steroid hormones and sexual maturity in the infaunal bivalve Scrobicularia plana from three sites differing by their level of contamination. General and Comparative Endocrinology 157, 133141.CrossRefGoogle ScholarPubMed
Pinheiro, J. and Gomes, E.M. (1994) A method for glycogen determination in mollusks. Arquivos de Biologia e Tecnologia 37, 569576.Google Scholar
Pipe, R.K. (1987) Oogenesis in the marine mussel Mytilus edulis: an ultrastructural study. Marine Biology 95, 405414.CrossRefGoogle Scholar
Robbins, I., Lenoir, F. and Mathieu, M. (1990) A putative neuroendocrine factor that stimulates glycogen mobilization in isolated glycogen cells from the marine mussel Mytilus edulis. General and Comparative Endocrinology 79, 123129.CrossRefGoogle ScholarPubMed
Rodríguez-Astudillo, S., Villalejo-Fuerte, M., García-Domínguez, F. and Guerrero-Caballero, R. (2002) Biochemical composition of Spondylus leucacanthus Broderip, 1833 (Bivalvia: Spondylidae) and its relationship with the reproductive cycle at Isla Danzante, Gulf of California, Mexico. Journal of Shellfish Research 21, 757762.Google Scholar
Seed, R. (1975) Reproduction in Mytilus edulis L. (Mollusca: Bivalvia) in European waters. Publicaziones de la Stazione Zoologica Napoli 39, 317334.Google Scholar
Shafee, M.S. (1989) Reproduction of Perna picta (Mollusca: Bivalvia) from the Atlantic coast of Morocco. Marine Ecology Progress Series 53, 235245.CrossRefGoogle Scholar
Soletchnik, P., Geairon, P., Razet, D. and Goulletquer, P. (1996) Physiologie de la maturation et de la ponte chez l'huître creuse Crassostrea gigas. La Tremblade: Rapport IFREMER, 27 pp.Google Scholar
Soudant, P., Marty, Y., Moal, J., Robert, R., Quéré, C., Le Coz, J.R. and Samain, J.F. (1996) Effect of food fatty acid and sterol quality on Pecten maximus gonad composition and reproduction process. Aquaculture 143, 361378.CrossRefGoogle Scholar
Tavares, M., do Amaral Mello, M.R.P., Campos, N.C., de Morais, C. and Ostini, S. (1998) Proximate composition and caloric value of the mussel Perna perna, cultivated in Ubatuba, São Paulo State, Brazil. Food Chemistry 62, 473475.CrossRefGoogle Scholar
Velez, A. and Epifanio, C.E. (1981) Effect of temperature and ration on gametogenesis and growth in the tropical mussel Perna Perna (L.). Aquaculture 22, 2126.CrossRefGoogle Scholar
Weibel, E.R., Kistler, G.S. and Scherle, W.F. (1966) Practical stereological methods for morphometric cytology. Journal of Cell Biology 30, 2338.CrossRefGoogle ScholarPubMed
Wood, A.R., Apte, S., MacAvoy, E.S. and Gardner, J.P.A. (2007) A molecular phylogeny of the marine mussel genus Perna (Bivalvia: Mytilidae) based on nuclear (ITS1&2) and mitochondrial (COI) DNA sequences. Molecular Phylogenetics and Evolution 44, 685698.CrossRefGoogle Scholar