Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T22:10:00.707Z Has data issue: false hasContentIssue false

Biochemical Genetic Variation, Growth and Regeneration of the Sea Anemone, Metridium, of British Shores

Published online by Cambridge University Press:  11 May 2009

Ann Bucklin
Affiliation:
University of San Diego, Alcala Park, San Diego, California 92110, U.S.A.

Extract

Sessile organisms capable of asexual reproduction may be expected to show much genetic differentiation among local populations: mating between distant individuals is unlikely and genetic drift will contribute to differentiation since habitats can be colonized by one or a few individuals. This study investigates genetic differentiation of populations of the sea anemone Metridium senile (L.) in Great Britain. Individuals of M. senile are sessile and reproduce both sexually, by free-spawning of gametes, and asexually, by regeneration of fragments torn from the pedal disc. Metridium senile is one of the most common and widespread of British sea anemones (Manuel, 1981); reports place it at an enormous number and variety of sites around Britian (unpublished results of surveys by the Underwater Conservation Society of the United Kingdom). The extensive geographic range and variability of the species have confounded attempts to determine the taxonomic status of the ecological and morphological forms, but make it an interesting system for genetic analysis.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, M. & Beardmore, J. A., 1976. Genetic evidence that the ‘Padstow mussel’ is Mytilus galloprovincialis. Marine Biology, 35, 139147.CrossRefGoogle Scholar
Avise, J. C., 1974. Systematic value of electrophoretic data. Systematic Zoology, 23, 465481.CrossRefGoogle Scholar
Ayala, F. J., 1975. Genetic differentiation during the speciation process. Evolutionary Biology, 8, 178.Google Scholar
Ayala, F. J., Tracey, M. L., Hedgecock, D. & Richmond, R. C., 1974. Genetic differentiation during the speciation process in Drosophila. Evolution, 28, 576592.CrossRefGoogle ScholarPubMed
Borden, D., Miller, E. T., Whitt, G. S. & Nanney, D. L., 1977. Electrophoretic analysis of evolutionary relationships in Tetrahymena. Evolution, 31, 91—102.CrossRefGoogle ScholarPubMed
Brewer, G. J., 1970. An Introduction to Isozyme Techniques. 186 pp. New York: Academic Press.Google Scholar
Bryce, D. & Hobart, A., 1972. The biology and identification of the larvae of the Chironomidae (Diptera). Entomologist's Gazette, 23, 175217.Google Scholar
Bucklin, A., 1980. The Reproduction and Population Biology of Metridium (Coelenterata, Actiniaria). Ph.D. Dissertation, University of California, Berkeley, California.Google Scholar
Bucklin, A. & Hedgecock, D., 1982. Biochemical genetic evidence for a third species of Metridium (Coelenterata, Actiniaria). Marine Biology, 66, 17.CrossRefGoogle Scholar
Carlgren, O., 1904. Studien über Regenerations- und Regulationserscheinungen I. Über die Korrelationen zwischen der Regeneration und der Symmetric bei den Actiniarien. Kungliga Svenska vetenskapsakademiens handlingar, 37(8), 105 pp.Google Scholar
Carlgren, O., 1949. A survey of the Ptychodactiaria, Corallimorpharia and Actiniaria. Kungliga Svenska vetenskapsakademiens handlingar, 1(1), 121 pp.Google Scholar
Dando, P. R., Southward, A. J. & Crisp, D. J., 1979. Enzyme variation in Chthamalus stellatus and Chthamalus montagui (Crustacea: Cirripedia): evidence for the presence of C. montagui in the Adriatic. Journal of the Marine Biological Association of the United Kingdom, 59, 307320.CrossRefGoogle Scholar
Dyer, M. F., Fry, W. G., Fry, P. D. & Cranmer, G. J., 1982. A series of North Sea benthos surveys with trawl and headline camera. Journal of the Marine Biological Association of the United Kingdom, 62, 297—313.CrossRefGoogle Scholar
Gosse, P. H., 1860. A History of the British Sea Anemones and Corals, xl, 362 pp. London: Ray Society.Google Scholar
Grassle, J. P. & Grassle, J. F. 1976. Sibling species in the marine pollution indicator Capitella (Polychaeta). Science, New York, 192, 567569.CrossRefGoogle ScholarPubMed
Hand, C., 1955. The sea anemones of central California. Part III. The acontiarian anemones. Wasmann Journal of Biology, 13, 189251.Google Scholar
Hedgecock, D., 1979. Biochemical genetic variation and evidence of speciation of Chthamalus barnacles of the tropical Eastern Pacific Ocean. Marine Biology, 54, 207214.CrossRefGoogle Scholar
Hoffmann, R. J., 1976. Genetics and asexual reproduction of the sea anemone Metridium senile. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 151, 478—488.CrossRefGoogle ScholarPubMed
Hoffmann, R. J., 1981. Evolutionary genetics of Metridium senile. II. Geographic patterns of allozyme variation. Biochemical Genetics, 19, 145154.CrossRefGoogle ScholarPubMed
Johnston, G., 1847. A History of the British Zoophytes, 2nd edition, vol. 1. xvi, 488 pp. London: Van Voorst.Google Scholar
Lakovaara, S., Sawra, A., Lankinen, P., Pohjola, L. & Lokki, J., 1976. The use of isoenzymes in tracing evolution and in classifying drosophilidae. Zoologica Scripta, 5, 173179.CrossRefGoogle Scholar
Levin, D., Howland, G. F. & Steiner, E., 1972. Protein polymorphism and genie heterozygosity in a population of the permanent translocation heterozygote Oenothera biennis. Proceedings of the National Academy of Sciences of the United States of America, 69, 14751477.CrossRefGoogle Scholar
Manuel, R. L., 1981. British Anthozoa. Synopses of the British Fauna, no. 18, 241 pp.Google Scholar
Manwell, C. & Baker, C. M. A., 1963. A sibling species of sea cucumber discovered by starch gel electrophoresis. Comparative Biochemistry and Physiology, 10, 3953.CrossRefGoogle ScholarPubMed
Möllering, H., Wahlefeld, A. W. & Michal, G., 1974. Visualization of NAD(P)-dependent reactions. In Methods of Enzymatic Analysis, vol. 1 (ed. Bergmeyer, H. U.), pp. 136141. New York: Academic Press.Google Scholar
Murphy, P. G., 1978. Collisella austrodigitalis sp.nov.: a sibling species of limpet (Acmaeidae) discovered by electrophoresis. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 155, 193206.CrossRefGoogle Scholar
Nei, M., 1972. The theory and estimation of genetic distance. Science, New York, 177, 434.CrossRefGoogle Scholar
Nei, M. & Roychoudhury, A. K., 1974. Sampling variances of heterozygosity and genetic distance. Genetics, 76, 379390.CrossRefGoogle ScholarPubMed
Polteva, D. G., 1969. Polarité et symétrie dans le processus d'embryogénèse somatique chez Metridium senile fimbriatum Verrill. Cahiers de biologie marine, 10, 187204.Google Scholar
Poulik, M. D., 1957. Starch-gel electrophoresis in a discontinuous system of buffers. Nature, London, 180, 14771479.CrossRefGoogle Scholar
Rawlinson, R., 1934. A comparative study of Metridium senile (L.) var. dianthus (Ellis) and a dwarf variety of this species occurring in the River Mersey, with a discussion on the systematic position of the genus Metridium. Journal of the Marine Biological Association of the United Kingdom, 19, 901919.CrossRefGoogle Scholar
Shick, J. M., Hoffmann, R. J. & Lamb, A. N., 1979. Asexual reproduction, population structure and genotype-environment interactions in sea anemones. American Zoologist, 19, 699714.CrossRefGoogle Scholar
Smithies, O., 1959. An improved procedure for starch-gel electrophoresis: further variations in the serum protein of normal individuals. Biochemical Journal, 71, 585—587.CrossRefGoogle ScholarPubMed
Sokal, R. R. & Rohlf, F. J., 1981. Biometry, xxi, 859 pp. San Francisco: W. H. Freeman.Google Scholar
Stephenson, T. A., 1935. The British Sea Anemones, vol. 2. 426 pp. London: Ray Society.Google Scholar
Tracey, M. L., Nelson, K., Hedgecock, D., Shleser, R. A. & Pressick, M. L., 1975. Biochemical genetics of lobsters (Homarus): genetic variation and the structure of American lobster populations. Journal of the Fisheries Research Board of Canada, 33, 11081119.Google Scholar
Turreson, G., 1922. Genotypic response of the plant species to the habitat. Hereditas, 3, 211350.CrossRefGoogle Scholar