Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T04:40:00.378Z Has data issue: false hasContentIssue false

The Biology of Chthamalus Stellatus (Poli)

Published online by Cambridge University Press:  11 May 2009

Hilary B. Moore
Affiliation:
Biological Station, Bermuda
J. A. Kitching
Affiliation:
University Department of Zoology, Bristol

Extract

Chthamalus stellatus is a littoral barnacle very similar in habitat and general ecological relations to another littoral barnacle, Balanus balanoides. In those localities where both species flourish they compete considerably for space, and also possibly for food. The fact that B. balanoides settles sooner after the winter storms than does Chthamalus probably favours the former.

Chthamalus is characteristically a southern species and Balanus balanoides a northern one, but the north and south ranges of the two species overlap in the British Isles and in France. The determining factor is presumably temperature.

Chthamalus is an Atlantic species, and Balanus balanoides is more characteristically a North Sea species. The essential factor in Atlantic water remains unknown, although in respect of a need for Atlantic water Chthamalus resembles Sagitta elegans and intertidal Echinus esculent.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1939

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassindale, R., 1936. The developmental stages of three English barnacles, Balanus balanoides (Linn.), Chthamalus stellatus (Poli), and Verruca stroemia (O. F. Müller). Proc. Zool. Soc. London, 1936, pp. 5774.Google Scholar
Beauchamp, R. S. A. & Ulyott, P., 1932. Competitive relationships between certain species of fresh-water triclads. Journ. Ecol., Vol. XX, pp. 200–8.CrossRefGoogle Scholar
Broekhuysen, G. J., 1936. On the development, growth, and distribution of Carcinides maenas (L.). Arch. Néerland. Zool., Vol. II, p. 257399.Google Scholar
Hamburg, Deutschen Seewarte, 1927. Atlas für Temperatur, Saltzegehalte und Dichte der Nordsee und Ostsee. Hamburg.Google Scholar
Fischer, E., 1928. Sur la distribution geographique de quelques organismes de rocher le long des côtes de la Manche. Trav. Lab. marit. Saint-Servan, Fasc. II, 16 pp.Google Scholar
Fischer, E., 1929. Recherches de bionomie et d'océanographie littorales sur la Ranee et le littoral de la Manche. Ann. Instit. Océanogr., N.S., Vol. V, pp. 202429.Google Scholar
Fischer-Piette, E., 1932. Répartition des principales espèces fixées sur les rochers battus des côtes de la Manche, de Lamnion à Fécamp. Ann. Instit. Océanogr., N.S., Vol. XII, pp. 107213.Google Scholar
Fischer-Piette, E., 1936. Études sur la biogéographie intercotidale des deux rives de la Manche. Journ. Linn. Soc., Vol. XL, pp. 181272.Google Scholar
Hatton, H., 1938. Essais de bionomie explicative sur quelques espèces intercotidales d'algues et d'animaux. Ann. Instit. Océanogr., N.S., Vol. XVII, pp. 241348.Google Scholar
Hatton, H. & Fischer-Piette, E., 1932. Observations et expériences sur le peuplement des côtes rocheuses par les cirripèdes. Bull. Instit. Océanogr. Monaco, No. 592, pp. 115.Google Scholar
Kidd, F. L., Pyefinch, K. A. & Butler, P. M., 1935. The ecology of Bardsey Island: topography and types of environment. Journ. Animal Ecol., Vol. IV, pp. 231–43.CrossRefGoogle Scholar
Kitching, J. A., 1935. An introduction to the ecology of intertidal rock surfaces on the coast of Argyll. Trans. Roy. Soc. Edinb., Vol. LVIII, pp. 351–74.CrossRefGoogle Scholar
Kitching, J. A., 1937. Studies in sublittoral ecology. II. Recolonization at the upper margin of the sublittoral region; with a note on the denudation of Laminaria forest by storms. Journ. Ecol., Vol. XXV, pp. 482–91.CrossRefGoogle Scholar
Marrat, F. P., 1886. Notes of the Cirripedia of the L.M.B.C. district. Fauna of Liverpool Bay, Rep. I, p. 209. London.Google Scholar
Moore, H. B., 1934. The biology of Balanus balanoides. I. Growth rate and its relation to size, season, and tidal level. Journ. Mar. Biol. Assoc., Vol. XIX, pp. 851–68.CrossRefGoogle Scholar
Moore, H. B., 1935. The biology of Balanus balanoides. III. The soft parts. Journ. Mar. Biol. Assoc., Vol. XX, pp. 263–77.CrossRefGoogle Scholar
Moore, H. B., 1936. The biology of Balanus balanoides. V. Distribution in the Plymouth area. Journ. Mar. Biol. Assoc., Vol. XX, pp. 701–16.CrossRefGoogle Scholar
Pantin, C. F. A., 1931. The adaption of Gunda ulvae to salinity. Journ. Exp. Biol., Vol. VIII, pp. 6394.CrossRefGoogle Scholar
Prenant, M. & Teissier, G., 1924. Notes éthologiques sur la faune marine sessile des environs de Roscoff. Cirripèdes, Bryozoaires, Hydraires. Trav. Stat. Biol. Roscoff, Vol. II, pp. 149.Google Scholar
Reid, D. M., 1935. The range of the sea urchin Echinus esculentus. Journ. Animal Ecol., Vol. IV, pp. 716.CrossRefGoogle Scholar
Russell, F. S., 1935. On the value of certain plankton animals as indicators of water movements in the English Channel and North Sea. Journ. Mar. Biol. Assoc., Vol. XX, pp. 309–32.CrossRefGoogle Scholar
Russell, F. S., 1936. Observations on the distribution of plankton animal indicators made on Col. E. T. Peel's Yacht “St George” in the mouth of the English Channel, July 1935. Journ. Mar. Biol. Assoc., Vol. XX, pp. 507–22.CrossRefGoogle Scholar
Strahan, A., 1898. The geology of the Isle of Purbeck and Weymouth. 278 pp. Memoirs of the Geological Survey. London.Google Scholar
Walton, C. L., 1915. The shore fauna of Cardigan Bay. Journ. Mar. Biol. Assoc., Vol. X, pp. 102–13.Google Scholar