Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-20T05:32:13.629Z Has data issue: false hasContentIssue false

Changes in lipids during simulated herbivorous feeding by the marine crustacean Neomysis integer

Published online by Cambridge University Press:  11 May 2009

Stuart A. Bradshaw
Affiliation:
Organic Geochemistry Unit, University of Bristol, Cantock's Close, Bristol, England, BS8 1TS
Sean C. M. O'Hara
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
Eric D. S Cornert
Affiliation:
Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB
Geoffrey Eglinton
Affiliation:
Organic Geochemistry Unit, University of Bristol, Cantock's Close, Bristol, England, BS8 1TS

Abstract

A laboratory study simulating herbivorous feeding was carried out with the marine crustacean Neomysis integer (Leach) and the dinoflagellate Scrippsiella trochoidea (Stein). Analyses of the total fatty acids, sterols and fatty alcohols in the food and faecal material, and in the animal tissue, have allowed the detailed changes in the dietary lipids during feeding to be characterised.

The results show this feeding leads to a net decrease in total lipid in the material passing through the gut of the animal, particularly due to the bioassimilation of fatty acids. All fatty acid saturation classes are assimilated but the mono-unsaturated and particularly polyunsaturated fatty acids are preferentially assimilated over others. Herbivorous feeding does, however, lead to the quantitative and relative increase in ‘bacterial’-type odd C number branched-chain fatty acids in the faecal material.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avigan, J. & Blumer, M., 1968. On the origin of pristane in marine organisms, journal of Lipid Research, 9, 3436.CrossRefGoogle ScholarPubMed
Bishop, J.K.B., Ketten, D.R. & Edmond, J.M., 1978. The chemistry, biology and vertical flux of particulate matter from the upper 400m of the Cape Basin in the southeast Atlantic Ocean. Deep-Sea Research, 25, 11211161.CrossRefGoogle Scholar
Björkhem, I. & Gustafsson, J.-A., 1971. Mechanism of microbial transformation of cholesterol into coprostanol. European Journal of Biochemistry, 21, 428432.CrossRefGoogle ScholarPubMed
Blumer, M., Mullin, M.M. & Thomas, D.W., 1963. Pristane in zooplankton. Science, New York, 140, 974.CrossRefGoogle ScholarPubMed
Bradshaw, S.A., O'hara, S.C.M., Corner, E.D.S., & Eglinton, G., 1989. Assimilation of dietary sterols and faecal contribution of lipids by the marine invertebrates Neomysis integer, Scrobicularia plana and Nereis diversicolor. Journal of the Marine Biological Association of the United Kingdom, 69, 891911.CrossRefGoogle Scholar
Brooks, P.W. & Maxwell, J.R., 1974. Early stage fate of phytol in a recently-deposited lacustrine sediment. In Advances in Organic Geochemistry (ed. B., Tissotet al.), pp. 977991. Paris: Editions Technip.Google Scholar
Cranwell, P.A., 1973. Branched-chain and cyclopropanoid acids in a recent sediment. Chemical Geology, 11, 307313.CrossRefGoogle Scholar
Culkin, F. & Morris, R.J., 1969. The fatty acids of some marine crustaceans. Deep-Sea Research, 16, 109116.Google Scholar
Dunham, J.E., Harrington, G.W. & Holz, G.G., 1966. Phytoplanktonic sources of the eicosapentaenoic and docosahexaenoic fatty acids characteristic of marine metazoa. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 131, 389.Google Scholar
Farrington, J.W. & Quinn, J.G., 1973. Biogeochemistry of fatty acids in recent sediments from Narragansett Bay, Rhode Island. Geochimica et Cosmochimica Acta, 37, 259268.CrossRefGoogle Scholar
Gagosian, R.B., Smith, S.O. & Nigrelli, G.E., 1982. Vertical transport of steroid alcohols and ketones measured in a sediment trap experiment in the equatorial Atlantic Ocean. Geochimica et Cosmochimica Acta, 46, 11631172.CrossRefGoogle Scholar
Gaskell, S.J. & Eglinton, G., 1975. Rapid hydrogenation of sterols in a contemporary lacustrine environment. Nature, London, 254, 209211.CrossRefGoogle Scholar
Goad, L.J., 1978. The sterols of marine invertebrates: composition, biosynthesis and metabolites. In Marine Natural Products: Chemical and Biological Perspectives, vol. 2 (ed. P.J., Scheuer), pp. 75172, New York: Academic Press.CrossRefGoogle Scholar
Goad, L.J. & Goodwin, T.W., 1972. The biosynthesis of plant sterols. Progress in Phytochemistry, 3, 113198.Google Scholar
Guillard, R.R.L., 1972. The culture of phytoplankton for feeding invertebrates. In The Culture of Marine Invertebrate Animals (ed. W.L., Smith and M.H., Chanley), pp. 2960. Oxford: Plenum Press.Google Scholar
Ha, T.B.T., Kokke, W.C.M.C. & Djerassi, C., 1982. Minor sterols of marine invertebrates 37. Isolation of novel coprostanols and 4α-methyl sterols from the tunicate Ascidia nigra. Steroids, 40, 433453.CrossRefGoogle Scholar
Harrington, G.W., Beach, D.H., Dunham, J.E. & Holz, G.G., 1970. The polyunsaturated fatty acids of marine dinoflagellates. Journal of Protozoology, 17, 213219.CrossRefGoogle ScholarPubMed
Harvey, H.R., Bradshaw, S.A., O'hara, S.C.M., Eglinton, G. & Corner, E.D.S., 1988. Lipid composition of the marine dinoflagellate Scrippsiella trochoidea. Phytochemistry, 27, 17231729.CrossRefGoogle Scholar
Harvey, H.R., Eglinton, G., O'hara, S.C.M. & Corner, E.D.S., 1987. Biotransformation and assimilation of dietary lipids by Calanus feeding on a dinoflagellate. Geochimica et Cosmochimica Acta, 51, 30313040.CrossRefGoogle Scholar
Honjo, S., 1978. Sedimentation of materials in the Sargasso Sea at a 5,367 m deep station. Journal of Marine Research, 36, 469492Google Scholar
Joseph, J.D., 1975. Identification of 3, 6, 9, 12, 15-octadecapentaenoic acid in laboratory-cultured photosynthetic dinoflagellates. Lipids, 20, 395403.CrossRefGoogle Scholar
Lee, R.F. & Loeblich, A.R., 1971. Distribution of 21:6 hydrocarbon and its relationship to 22:6 fatty acid in algae. Photochemistry, 10, 593602.CrossRefGoogle Scholar
Moreno, V.J., Moreno, J.E.A.De & Brenner, R.R., 1979. Fatty acid metabolism in the calanoid copepod Paracalanus parvus: 1. Polyunsaturated fatty acids. Lipids, 14, 313317.CrossRefGoogle ScholarPubMed
Morris, R.J., Ferguson, C.F. & Raymont, J.E.G., 1973. Preliminary studies on the lipid metabolism of Neomysis integer, involving labelled feeding experiments. Journal of the Marine Biological Association of the United Kingdom, 53, 657664.CrossRefGoogle Scholar
Neal, A.C., Prahl, F.G., Eglinton, G., O'hara, S.C.M. & Corner, E.D.S., 1986. Lipid changes during a planktonic feeding sequence involving unicellular algae, Elminius nauplii and adult Calanus. Journal of the Marine Biological Association of the United Kingdom, 66, 113.CrossRefGoogle Scholar
Nott, J.A., Corner, E.D.S., Mavin, L.J. & O'hara, S.C.M., 1985. Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Marine Biology, 89, 271279.CrossRefGoogle Scholar
Parmentier, G. & Eyssen, H., 1974. Mechanism of biohydrogenation of cholesterol to coprostanol by Eubacterium ATCC 2108. Biochimica et Biophysica Acta, 348, 279284.CrossRefGoogle Scholar
Perry, G.J., Volkman, J.K., Johns, R.B. & Bavor, H.J., 1979. Fatty acids of bacterial origin in contemporary marine sediments. Geochimica et Cosmochimica Acta, 43, 17151725.CrossRefGoogle Scholar
Prahl, F.G., Eglinton, G., Corner, E.D.S. & O'hara, S.C.M., 1984 a. Copepod fecal pellets as a source of dihydrophytol in marine sediments. Science, New York, 224, 12351237.CrossRefGoogle ScholarPubMed
Prahl, F.G., Eglinton, G., Corner, E.D.S., O'hara, S.C.M. & Forsberg T.E.V., 1984 b. Changes in plant lipids during passage through the gut of Calanus. Journal of the Marine Biological Association of the United Kingdom, 64, 317334.CrossRefGoogle Scholar
Sargent, J.R. & Falk-Petersen, S., 1981. Ecological investigations on the zooplankton community in Balsfjorden, Northern Norway: Lipids and fatty acids in Meganydiphanes norvegica, Thysanoessa raschi and T. inermis during mid-winter. Marine Biology, 62, 131137.CrossRefGoogle Scholar
Schroepfer, G.J., 1982. Sterol biosynthesis. Annual Review of Biochemistry, 51, 555585.CrossRefGoogle ScholarPubMed
Smith, D.J., Eglinton, G., & Morris, R.J., 1983. Interfacial sediment and assessment of organic input from a highly productive water column. Nature, London, 304, 259262.CrossRefGoogle Scholar
Tanoue, E. & Handa, N., 1980. Vertical and horizontal changes in fatty acid composition of particulate matter in the Pacific sector of the Southern ocean. Transactions of the Tokyo University of Fisheries, 5, 8595.Google Scholar
Tanoue, E., Handa, N. & Sakugawa, H., 1982. Difference of the chemical composition of organic matter between fecal pellet of Euphausia superba and its feed, Dunaliella tertiolecta. Transactions of the Tokyo University of Fisheries, 5, 189196.Google Scholar
Taylor, C.D., Smith, S.O. & Gagosian, R.B., 1981. Use of microbial enrichments for the study of anaerobic degradation of cholesterol. Geochimica et Cosmochimica Acta, 45, 21612168.CrossRefGoogle Scholar
Teshima, S. & Kanazawa, A., 1971. Bioconversion of the dietary ergosterol to cholesterol in Artemia salina. Comparative Biochemistry and Physiology, 38B, 603607.Google Scholar
Van Vleet, E.S. & Quinn, J.G., 1979. Early diagenesis of fatty acids and isoprenoid alcohols in estuarine and coastal sediments. Geochimica et Cosmochimica Acta, 43, 289303.CrossRefGoogle Scholar
Van Der, Veen J., Medwadowski, B. & Olcutt, H.S., 1971. The lipids of krill (Euphausia species) and red crab (Pleuroncodes planipes). Lipids, 6, 481485.CrossRefGoogle Scholar
Volkman, J.K., Corner, E.D.S. & Eglinton, G., 1980 a. Transformations of biolipids in the marine food web and in underlying bottom sediments. Colloques Internationaux du Centre National de la Recherche Scientifiques, no. 293, 185197.Google Scholar
Volkman, J.K., Johns, R.B., Gillan, F.T., Perry, G.J. & Bavor, H.J. Jr, 1980 b. Microbial lipids of an intertidal sediment - I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta, 44, 11331143.CrossRefGoogle Scholar
Wakeham, S.G. & Canuel, E.A., 1986. Lipid composition of the pelagic crab Pleuroncodes planipes, its feces, and sinking particulate organic matter in the Equatorial North Pacific Ocean. Organic Geochemistry, 9, 331343.CrossRefGoogle Scholar
Wakeham, S.G., Farrington, J.W., Gagosian, R.B., Lee, C., De Baar, H., Nigrelli, G.E., Tripp, B.W., Smith, S.O. & Frew, N.M., 1980. Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature, London, 286, 798800.CrossRefGoogle Scholar
Wakeham, S.G., Farrington, J.W. & Volkman, J.K., 1983. Fatty acids, wax esters, triacylglycerols and alkyldiacylglycerols associated with particles collected in sediment traps in the Peru upwelling. In Advances in Organic Geochemistry (ed. M., BJøroyet al.,) pp. 185197. Chichester: John Wiley.Google Scholar
Wardroper, A.M.K., 1979. Aspects of the Geochemistry of Polycyclic Isoprenoids. PhD Thesis, University of Bristol.Google Scholar