Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-18T19:20:25.151Z Has data issue: false hasContentIssue false

A Comparative study of Reproductive Cycles in Four polychaete Species belonging to the Family Cirratulidae

Published online by Cambridge University Press:  11 May 2009

P. E. Gibbs
Affiliation:
The Plymouth Laboratory

Extract

Gametogenesis has been studied in four cirratulid polychaetes: Caulleriella caput-esocis, Tharyx marioni, Cirriformia tentaculata and Cirratulus cirratus.

In all four species, sperm development follows a similar course of events, with the sperm cells being grouped in spheres and then platelets before developing tails to give rosettes which finally disintegrate to release the active spermatozoa. Except in Cirratulus, there is a well-defined annual cycle in the development of sperm.

Oogenesis in Caulleriella and Cirriformia is similar in that the growth curve of the oocytes is roughly sigmoid. In Tharyx the release of the oocytes to the coelom is delayed and discrete ovaries are formed, only the later stages of oocyte growth taking place within the coelom. In contrast to the above three species, oogenesis in Cirratulus does not show an annual cycle.

Maturation of the oocytes within the coelom prior to shedding has been established in Tharyx, Cirratulus and Cirriformia. In the former two species meiosis proceeds as far as the metaphase I stage and in the latter to the anaphase I stage, before the oocytes are released. Fertilizations were achieved only with oocytes which had matured in all three species. In the fourth species, Caulleriella, no fertile oocytes were discovered.

The diameters of the mature oocytes and the main spawning seasons of the four species at Plymouth are as follows: Caulleriella, about 110 μ (August to October); Tharyx, 200– 220 μ (late October to early November); Cirriformia, about 117 μ (late June to early July); Cirratulus, 135–150 μ (throughout the year).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akesson, B. 1962. The embryology of Tomopteris helgolandica (Polychaeta). Acta zool. Stockh., Vol. 43, pp. 135–99.CrossRefGoogle Scholar
Allen, M. J. 1959. Embryological development of the polychaetous annelid Diopatra cuprea (Bosc). Biol Bull. mar. biol. Lab., Woods Hole, Vol. 116, pp. 339–61.Google Scholar
Allen, M. J. 1964. Embryological development of the syllid Autolytus fasciatus (Bosc) (Class Polychaeta). Biol Bull. mar. biol. Lab., Woods Hole, Vol. 127, pp. 187205.Google Scholar
Allen, M. J. 1967. Nucleic acid and protein synthesis in the developing oocytes of the budding form of the syllid Autolytus edwarsi (Class Polychaeta). Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 133, pp. 287302.Google Scholar
Allyn, H. M. 1912. The initiation of development in Chaetopterus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 24, pp. 2173.Google Scholar
Austin, C. R. 1963. Fertilization in Pectinaria (= Cistenides) gauldii. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 124, pp. 115–24.Google Scholar
Baker, J. R. 1944. The structure and composition of the Golgi element. Q. Jl microsc. Sci., Vol. 85, pp. 171.Google Scholar
Bonhomme, C. 1944. La luminescence de Heterocirrus bioculatus Keferstein. Bull. Inst. océanogr. Monaco, No. 871, pp. 1–7.Google Scholar
Bonhomme, C. 1958. La bioluminescence de quelques annélides mediterranéennes. Naturalia monspel., Serie Zool., Fasc. 11, pp. 7137.Google Scholar
Brafield, A. E. & Chapman, G. 1967. Gametogenesis and breeding in a natural population of Nereis virens. J. mar. biol. Ass. U.K., Vol. 47, pp. 619–27.CrossRefGoogle Scholar
Caullery, M. & Mesnil, F. 1898. Les formes épitoques et l'evolution des cirratuliens. Annls Univ. Lyon, Fasc. 39, pp. 1200.Google Scholar
Clark, R. B. 1965. Endocrinology and the reproductive biology of polychaetes. Oceanogr. mar. biol., 3, pp. 211–55.Google Scholar
Clark, R. B. 1969. Endocrine influences in annelids. Gen. comp. Endocr., Suppl. 2, pp. 572–81.Google Scholar
Clark, R. B. & Ruston, R. J. G. 1963. The influence of brain extirpation on oogenesis in the polychaete Nereis diversicolor. Gen. comp. Endocr., Vol. 3, pp. 529–41.Google Scholar
Costello, D. P. 1940. The fertilisability of nucleated and non-nucleated fragments of centrifuged Nereis eggs. J. Morph., Vol. 66, pp. 99–114.Google Scholar
Cragg, J. B. 1939. The physiology of maturation and fertilization in Pomatoceros triqueter (L.). 1. The nature of the material. J. mar. biol. Ass. U.K., Vol. 23, pp. 483–97.CrossRefGoogle Scholar
Cunningham, J. T. 1907. On Kalpidorhynchus arenicolae a new gregarine, parasitic in Arenicola ecaudata. Arch. Protistenk., Bd. 10, pp. 199215.Google Scholar
Cunningham, J. T. & Ramage, G. A. 1888. The Polychaeta Sedentaria of the Firth of Forth. Trans. R. Soc. Edinb., Vol. 33, pp. 635–84.Google Scholar
Dalcq, A. 1952. Initiation à l'embryologie générale. 122 pp. Paris: Masson.Google Scholar
Dales, R. P. 1950. The reproduction and larval development of Nereis diversicolor O. F. Müller. J. mar. biol. Ass. U.K., Vol. 29, pp. 321–60.Google Scholar
Dales, R. P. 1951. Notes on the reproduction and early development of the cirratulid Tharyx marioni (St. Joseph). J. mar. biol. Ass. U.K., Vol. 30, pp. 113–17.CrossRefGoogle Scholar
Fauré-Fremiet, E. 1921. La maturation et l'activation expérimentale de l'oeuf de Sabellaria. C. r. Séam. Soc. Biol., T. 85, pp. 810–11.Google Scholar
Fauré-Fremiet, E. 1924. L'oeuf de Sabellaria alveolata L. Archs Anat. microsc., T. 20, pp. 211342.Google Scholar
Durchon, M. 1955. Sur le polymorphisme présenté par quelques néréidiens (annélides polychètes) au moment de la reproduction. Bull. Soc. Hist. nat. Afr. N., T. 46, pp. 180–93.Google Scholar
FranzÉn, A. 1956. On spermiogenesis, morphology of the spermatozoon, and biology of fertilizatiamong invertebrates. Zool. Bidr. Upps., Bd. 31, pp. 355482.Google Scholar
Fuchs, H. M. 1911. Note on the early larvae of Nephthys and Glycera. J. mar. biol. Ass. U.K., Vol. 9, pp. 164–70.Google Scholar
Galloway, T. W. & Welch, P. S. 1911. Studies on a phosphorescent Bermudan annelid, Odontosyllis enopla Verrill. Trans. Am. microsc. Soc, Vol. 30, pp. 1339.CrossRefGoogle Scholar
George, J. D. 1963. Behavioural differences between the larval stages of Cirriformia tentaculata (Montagu) from Drake's Island (Plymouth Sound) and from Southampton Water. Nature, Lond., Vol. 199, p. 105.Google Scholar
George, J. D. 1964. The life history of the cirratulid worm, Cirriformia tentaculata, on an inter-tidal mudflat. J. mar. biol. Ass. U.K., Vol. 44, pp. 4765.Google Scholar
George, J. D. 1967. Cryptic polymorphism in the cirratulid polychaete Cirriformia tentaculata. J. mar. biol. Ass. U.K., Vol. 47, pp. 75–9.Google Scholar
George, J. D. 1968. The effect of the 1962–63 winter on the distribution of the cirratulid polychaetes, Cirratulus cirratus (Müller) and Cirriformia tentaculata (Montagu) in the British Isles. J. Anim. Ecol., Vol. 37, pp. 321–31.Google Scholar
Gibbs, P. E. 1969. A quantitative study of the polychaete fauna of certain fine sediments in Plymouth Sound. J. mar. biol. Ass. U.K., Vol. 49, pp. 311–26.CrossRefGoogle Scholar
Gidholm, L. 1965. On the morphology of the sexual stages, mating and egg laying in Autolytus (Polychaeta). Zool. Bidr. Upps., Bd. 37, pp. 144.Google Scholar
Goldstein, L. 1953. A study of the mechanism of activation and nuclear breakdown in the Chaetopterus egg. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 105, pp. 87102.CrossRefGoogle Scholar
Goodrich, E. S. & PixellGoodrich, H. L. M. 1920. Gonospora minchinii n.sp., a gregarine inhabiting the egg of Arenicola. Q. Jl microsc. Sci., Vol. 65, pp. 157–62.Google Scholar
Hauenschild, C. 1951. Nachweis der sogenannten atoken Geschlechtsform des Polychaeten Platynereis Dumerilii Aud. et M.-Edw. als eigene Art auf Grand von Zuchtversuchen. Zool. Jb. (Allg. Zool.), Bd. 63, pp. 107–28.Google Scholar
Heilbrunn, L. V. & Wilbu, K. M. 1937. Stimulation and nuclear breakdown in the Nereis egg. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 73, pp. 557–64.CrossRefGoogle Scholar
Heilbrunn, L. V. & Wilson, W. L. 1948. Protoplasmic viscosity changes during mitosis in the egg of Chaetopterus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 95, pp. 5768.Google Scholar
Hentschel, C. C. 1926. On the correlation of the life-history of the acephaline gregarine, Gonospora, with the sexual cycle of its host. Parasitology, Vol. 18, pp. 137–43.Google Scholar
Hentschel, C. C. 1930. On the correlation of the life-history of the acephaline gregarine, Gonospora, with the sexual cycle of its host. II. Gonospora (Kalpidorhynchus) arenicolae. Parasitology, Vol. 22, pp. 505–9.CrossRefGoogle Scholar
Howie, D. I. D. 1961. The spawning of Arenicola marina (L.). III. Maturation and shedding of the ova. J. mar. biol. Ass. U.K., Vol. 41, pp. 771–83.Google Scholar
Howie, D. I. D. 1963. Experimental evidence for the humoral stimulation of ripening of the gametes and spawning in the polychaete Arenicola marina (L.). Gen. comp. Endocr., Vol. 3, pp. 660–8.CrossRefGoogle Scholar
Howie, D. I. D. & Mcclenaghan, C. M. 1965. Evidence for a feedback mechanism influencing spermatogonial division in the lugworm {Arenicola marina L.). Gen. comp. Endocr., Vol. 5, pp. 40–4.CrossRefGoogle Scholar
Huntsman, A. G. 1948. Odontosyllis at Bermuda and lunar periodicity. J. Fish. Res. Bd Can., Vol. 7, pp. 363–9.Google Scholar
Just, E. E. 1930. Hydration and dehydration in the living cell. III. The fertilization capacity of Nereis eggs after exposure to hypotonic sea-water. Protoplasma, Vol. 10, pp. 2432.CrossRefGoogle Scholar
Klawe, W. L. & Dickie, L. M. 1957. Biology of the bloodworm Glycera dibranchiata Ehlers, and its relation to the bloodworm fishery of the Maritime Provinces. Bull. Pish. Res. Bd Can., Vol. 115, pp. 137.Google Scholar
Lillie, F. R. 1911. Studies of fertilization in Nereis. I. The cortical changes in the egg. II. Partial fertilization. J. Morph., Vol. 22, pp. 361–90.CrossRefGoogle Scholar
Mcintosh, W. C. 1915. A Monograph of the British Marine Annelids, Vol. III. 368 pp. London: Ray Society.Google Scholar
Markert, R. E. Markert, B. J. & Vertrees, N. J. 1961. Lunar periodicity in spawning and luminescence in Odontosyllis enopla. Ecology, Vol. 42, pp. 414–15.Google Scholar
Mead, A. D. 1898. The origin and behaviour of the centrosomes in the annelid egg. J. Morph., Vol. 14, pp. 181218.CrossRefGoogle Scholar
Mead, A. D. 1901. The rate of cell-division and the function of the centrosome. Contr. biol. Lab. Brown Univ., Vol. 2 (3), pp. 116.Google Scholar
Milne, A. 1938. The ecology of the Tamar Estuary. III. Salinity and temperature conditions in the lower estuary. J. mar. biol. Ass. U.K., Vol. 22, pp. 529–42.Google Scholar
Monroy, A. 1948. A preliminary approach to the physiology of fertilization in Pomatoceros triqueter L. Ark. Zool., Bd. 40A (21), pp. 17.Google Scholar
Monroy, A. 1954. Observations on the fertilization reaction in the eggs of some polychaetes and an ascidian, with special reference to the cortical changes. Pubbl. Staz. zool. Napoli, Vol. 25, pp. 188–97.Google Scholar
Newell, G. E. 1951. The life-history of Clymenella torquata (Leidy) (Polychaeta). Proc. zool. Soc. Lond., Vol. 121, pp. 561–86.Google Scholar
Okud, S. 1947. On an ampharetid worm, Schistocomus sovjeticus Annenkova, with some notes on its larval development. J. Fac. Sci. Hokkaido Univ. (Ser. VI), Vol. 9, pp. 321–9.Google Scholar
Olive, P. J. W. 1970. Reproduction of a Northumberland population of the polychaete Cirratulus cirratus. Mar. Biol., Vol. 5, pp. 259–73.CrossRefGoogle Scholar
Olive, P. J. W. 1971. Ovary structure and oogenesis in Cirratulus cirratus (Polychaeta: Cirratulidae). Mar. Biol., Vol. 8, pp. 243–59.CrossRefGoogle Scholar
Rothschild, Lord 1956. Fertilization, 170 pp. London: Methuen.Google Scholar
Saint-Joseph, Baron A. De 1894. Les annélides polychètes de côtes de Dinard. Annls Sci. nat. Zool. (Ser. 7), T. 17, pp. 1395.Google Scholar
Scott, A. & Lebaron, G. 1950. Factors involved in the breakdown of the germinal vesicle in the egg of Chaetopterus pergamentaceus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 99, p. 363.Google Scholar
Simpson, M. 1962. Gametogenesis and early development of the polychaete Glycera dibranchiata. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 123, pp. 412–23.CrossRefGoogle Scholar
Southern, R. 1914. Archiannelida and Polychaeta. Clare Island Survey. Proc. R. Ir. Acad., Vol. 31 (2), Pt. 47, pp. 1160.Google Scholar
Southward, E. C. & Southward, A. J. 1958. The breeding of Arenicola ecaudata Johnston and A. branchialis Aud. & Edw. at Plymouth. J. mar. biol. Ass. U.K., Vol. 37, pp. 267–86.Google Scholar
Spooner, G. M. & Moore, H. B. 1940. The ecology of the Tamar Estuary. VI. An account of the macrofauna of the intertidal muds. J. mar. biol. Ass. U.K., Vol. 24, pp. 283330.Google Scholar
Stephenson, W. 1950. The development of Cirratulus cirratus (O. F. Müller). Rep. Dove mar. Lab. for 1948, Ser. 3 No. 11, pp. 720.Google Scholar
Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev., Vol. 25, pp. 145.Google Scholar
Tweedell, K. S. 1961. Factors affecting germinal vesicle breakdown in Pectinaria (Cistenides) gouldii. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 121, p. 412.Google Scholar
Tweedell, K. S. 1962. Cytological studies during germinal vesicle breakdown of Pectinaria gouldii with vital dyes, centrifugation and fluorescence microscopy. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 123, pp. 424–49.CrossRefGoogle Scholar
Tweedell, K. S. 1966. Oocyte development and incorporation of H3-thymidine and H3-uridine in Pectinaria (Cistenides) gouldii. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 131, pp. 516–38.CrossRefGoogle Scholar
Waterman, A. J. 1934. Observations on reproduction, prematuration, and fertilization in Sabellaria vulgaris. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 67, pp. 97114.CrossRefGoogle Scholar
Wilson, D. P. 1929. The larvae of the British sabellarians. J. mar. biol. Ass. U.K., Vol. 16, pp. 221–69.Google Scholar
Wilson, D. P. 1933. The larval stages of Notomastus latericeus Sars. J. mar. biol. Ass. U.K., Vol. 18, pp. 511–18.Google Scholar
Wilson, D. P. 1936. The development of Audouinia tentaculata (Montagu). mar. biol. Ass. U.K., Vol. 20, pp. 567–79CrossRefGoogle Scholar
Wilson, D. P. 1936a. The development of the sabellid Branchiomma vesiculosum. Q. Jl micros. Sci., Vol. 78, pp. 543603.Google Scholar
Wilson, D. P. 1948. The larval development of Ophelia bicornis Savigny. J. mar. biol. Ass. U.K., Vol. 27, pp. 540–53.Google Scholar
Wilson, D. P. 1968. Some aspects of the development of eggs and larvae of Sabellaria alveolata (L.). J. mar. biol. Ass. U.K., Vol. 48, pp. 367–86.Google Scholar