Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T04:39:01.482Z Has data issue: false hasContentIssue false

Comparison of epifaunal assemblages between Cymodocea nodosa and Caulerpa prolifera meadows in Gran Canaria (eastern Atlantic)

Published online by Cambridge University Press:  22 November 2013

Lydia Png-Gonzalez*
Affiliation:
Centro en Biodiversidad y Gestión Ambiental, Marine Sciences Faculty, Campus Tafira, Universidad de Las Palmas de Gran Canaria, 35017 Tafira, Las Palmas, Spain
Maite Vázquez-Luis
Affiliation:
Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
Fernando Tuya
Affiliation:
Centro en Biodiversidad y Gestión Ambiental, Marine Sciences Faculty, Campus Tafira, Universidad de Las Palmas de Gran Canaria, 35017 Tafira, Las Palmas, Spain
*
Correspondence should be addressed to: Lydia Png-Gonzalez, Centro en Biodiversidad y Gestión Ambiental, Marine Sciences Faculty, Campus Tafira, Universidad de Las Palmas de Gran Canaria, 35017 Tafira, Las Palmas, Spain email: lydiapng@gmail.com

Abstract

Epifaunal invertebrates are sensitive to changes in the identity of the dominant host plant, so assessing differences in the structure of epifaunal assemblages is particularly pertinent in areas where seagrasses have been replaced by alternative vegetation (e.g. green seaweeds). In this study, we aimed to compare the diversity, abundance and structure of epifaunal assemblages, particularly amphipods, between meadows dominated by the seagrass Cymodocea nodosa and the green rhizophytic algae Caulerpa prolifera on shallow soft bottoms of Gran Canaria Island, determining whether patterns were temporally consistent between two times. The epifaunal assemblage structure (abundance and composition) consistently differed between both plants, those assemblages associated with C. prolifera-dominated beds being more diverse and abundant relative to C. nodosa meadows. Amphipods constituted ~70% of total crustaceans for the overall study, including 37 species belonging to 16 families. The amphipod abundance was ~3 times larger in C. prolifera-dominated beds than in C. nodosa meadows. We detected species-specific affinities; for example, Microdeutopus stationis, Dexamine spinosa, Aora spinicornis, Ischyrocerus inexpectatus and Apherusa bispinosa were more abundant in C. prolifera-dominated beds; while the caprellid Mantacaprella macaronensis dominated in C. nodosa meadows. However, some species, such as Pseudoprotella phasma and Ampithoe ramondi, were found in both habitats with varying abundances between times.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, M.J. (2001a) A new method for non-parametric multivariate analysis of variance. Australian Journal of Ecology 26, 3246.Google Scholar
Anderson, M.J. (2001b) Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58, 626639.Google Scholar
Barberá, C., Tuya, F., Boyra, A., Sanchez-Jerez, P., Blanch, I. and Haroun, R.J. (2005) Spatial variation in the structural parameters of Cymodocea nodosa seagrass meadows in the Canary Islands: a multiscaled approach. Botanica Marina 48, 122126.Google Scholar
Bologna, P.A.X. and Heck, K.L Jr. (1999) Macrofaunal associations with seagrass epiphytes. Relative importance of trophic and structural characteristics. Journal of Experimental Marine Biology and Ecology 242, 2139.Google Scholar
Box, A., Sureda, A., Tauler, P., Terrados, J., Marbà, N., Pons, A. and Deudero, S. (2010) Seasonality of caulerpenyne content in native Caulerpa prolifera and invasive C. taxifolia and C. racemosa var. cylindracea in the western Mediterranean Sea. Botanica Marina 53, 367375.Google Scholar
Brearley, A., Kendrick, A.J. and Walker, D. (2008) How does burrowing by the isopod Limnoria agrostisa (Crustacea: Limnoriidae) affect the leaf canopy of the southern Australian seagrass Amphibolis griffithii? Marine Biology 156, 6577.Google Scholar
Conradi, M. and López-González, P.J. (1999) The benthic Gammaridea (Crustacea, Amphipoda) fauna of Algeciras Bay (Strait of Gibraltar): Distributional ecology and some biogeographical considerations. Helgoland Marine Research 53, 28.Google Scholar
Conradi, M. and López-González, P.J. (2001) Relationships between environmental variables and the abundance of Peracarid fauna in Algeciras Bay (Southern Iberian Peninsula). Ciencias Marinas 27, 481500.CrossRefGoogle Scholar
Conradi, M., López-González, P.J. and García-Gómez, C. (1997) The amphipod community as a bioindicator in Algeciras Bay (Southern Iberian Peninsula) based on a spatio-temporal distribution. Marine Ecology 18, 97111.Google Scholar
Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P. and van den Belt, M. (1997) The value of the world's ecosystem services and natural capital. Nature 387, 253260.Google Scholar
Duarte, C.M. (2000) Marine biodiversity and ecosystem services: an elusive link. Journal of Experimental Marine Biology and Ecology 250, 117131.Google Scholar
Duarte, C.M. (2002) The future of seagrass meadows. Environmental Conservation 29, 192206.Google Scholar
Duffy, J.E. (2006) Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series 311, 233250.Google Scholar
Duffy, J.E. and Harvilicz, A.M. (2001) Species-specific impacts of grazing amphipods in an eelgrass-bed community. Marine Ecology Progress Series 223, 201211.Google Scholar
Erickson, A.A., Paul, V.J., Van Alstyne, K.L. and Kwiatkowski, L.M. (2006) Palatability of macroalgae that use different types of chemical defenses. Journal of Chemical Ecology 32, 18831895.Google Scholar
Espino, F., Tuya, F., Brito, A. and Haroun, R. (2011a) Ichthyofauna associated with Cymodocea nodosa meadows in the Canarian Archipelago (central eastern Atlantic): community structure and nursery role. Ciencias Marinas 37, 157174.Google Scholar
Espino, F., Tuya, F., Brito, A. and Haroun, R. (2011b) Variabilidad espacial en la estructura de la ictiofauna asociada a praderas de Cymodocea nodosa en las Islas Canarias, Atlántico nororiental subtropical. Revista de Biología Marina y Oceanografía 46, 391403.Google Scholar
Farlin, J.P., Lewis, L.S., Anderson, T.W. and Lai, C.T. (2010) Functional diversity in amphipods revealed by stable isotopes in an eelgrass ecosystem. Marine Ecology Progress Series 420, 277281.Google Scholar
Gartner, A., Tuya, F., Lavery, P.S. and McMahon, K. (2013) Habitat preferences of macroinvertebrate fauna among seagrasses with varying structural forms. Journal of Experimental Marine Biology and Ecology 439, 143151.Google Scholar
Guerra-García, J.M. and García-Gómez, J.C. (2005) Assessing pollution levels in sediments of a harbour with two opposing entrances. Environmental implications. Journal of Environmental Management 77, 111.CrossRefGoogle ScholarPubMed
Haroun, R., Gil-Rodríguez, M.C. and Wildpret de la Torre, W. (2003) Plantas Marinas de las Islas Canarias. Toledo: Canseco Editores.Google Scholar
Hay, M.E., Duffy, J.E. and Fenical, W. (1990) Host-plant specialization decreases predation on a marine amphipod: an herbivore in plant's clothing. Ecology 71, 733743.Google Scholar
Hendriks, I.E., Bouma, T.J., Morris, E.P. and Duarte, C.M. (2010) Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. Marine Biology 157, 473481.Google Scholar
Horinouchi, M., Tongnunui, P., Furumitsu, K., Nakamura, Y., Kanou, K., Yamaguchi, A., Okamoto, K. and Sano, M. (2012) Food habits of small fishes in seagrass habitats in Trang, southern Thailand. Fisheries Science 78, 577587.Google Scholar
Hughes, A.R., Williams, S.L., Duarte, C.M., Heck, K.L. Jr and Waycott, M. (2009) Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment 7, 242246.CrossRefGoogle Scholar
Jung, V., Thibaut, T., Meinesz, A. and Pohnert, G. (2002) Comparison of the wound-activated transformation of caulerpenyne by invasive and noninvasive Caulerpa species of the Mediterranean. Journal of Chemical Ecology 28, 20912105.Google Scholar
Lincoln, R.J. (1979) British marine Amphipoda: Gammaridea. London: British Museum (Natural History).Google Scholar
Martínez-Samper, J. (2011) Análisis espacio-temporal de las praderas de Cymodocea nodosa (Ucria) Ascherson en la isla de Gran Canaria. MSc thesis. Universidad de Las Palmas de Gran Canaria, Spain.Google Scholar
Monterroso, O., Riera, R. and Núñez, J. (2012) Subtidal soft-bottom macroinvertebrate communities of the Canary Islands. An ecological approach. Brazilian Journal of Oceanography 60, 19.Google Scholar
Ortega, I., Díaz, Y.J. and Martín, A. (2010) Feeding rates and food preferences of the amphipods present on macroalgae Ulva sp. and Padina sp. Zoologica Baetica 21, 4553.Google Scholar
Orth, R.J., Carruthers, T.J.B., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L Jr, Hughes, A.R., Kendrick, G.A., Kenworthy, W.J., Olyarnik, S., Short, F.T., Waycott, M. and Williams, S. (2006) A global crisis for seagrass ecosystems. BioScience 56, 987996.Google Scholar
Pavón-Salas, N., Herrera, R., Hernández-Guerra, A. and Haroun, R. (2000) Distributional pattern of seagrasses in the Canary Islands (Central–East Atlantic Ocean). Journal of Coastal Research 16, 329335.Google Scholar
Poore, A.G.B. (2005) Scales of dispersal among hosts in a herbivorous marine amphipod. Austral Ecology 30, 219228.Google Scholar
Poore, A.G.B. and Hill, N.A. (2006) Sources of variation in herbivore preference: among-individual and past diet effects on amphipod hosts choice. Marine Biology 149, 14031410.Google Scholar
Reyes, J., Sansón, M. and Afonso-Carrillo, J. (1995) Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands. Aquatic Botany 50, 171180.Google Scholar
Roberts, D.A. and Poore, A.G.B. (2005) Habitat configuration affects colonization of epifauna in a marine algal bed. Biological Conservation 127, 1826.Google Scholar
Ruffo, S. (1982) The Amphipoda of the Mediterranean. Part 1. Monaco: Mémoires de l'Institut Océanographique.Google Scholar
Ruffo, S. (1993) The Amphipoda of the Mediterranean. Part 3. Monaco: Mémoires de l'Institut Océanographique.Google Scholar
Ruffo, S. (1998) The Amphipoda of the Mediterranean. Part 4. Monaco: Mémoires de l'Institut Océanographique.Google Scholar
Sánchez-Jerez, P., Barberá Cebrián, C. and Ramos-Esplá, A.A. (1999) Comparison of the epifauna spatial distribution in Posidonia oceanica, Cymodocea nodosa and unvegetated bottoms: importance of meadow edges. Acta Oecologica 20, 391405.Google Scholar
Sánchez-Jerez, P., Barberá-Cebrián, C. and Ramos-Esplá, A.A. (2000) Influence of the structure of Posidonia oceanica meadows modified by bottom trawling on crustacean assemblages: Comparison of amphipods and decapods. Scientia Marina 64, 319326.Google Scholar
Sánchez-Moyano, J.E., Estacio, F.J., García-Adiego, E.M. and García-Gómez, J.C. (2001a) Effect of the vegetative cycle of Caulerpa prolifera on the spatio-temporal variation of invertebrate macrofauna. Aquatic Botany 70, 163174.Google Scholar
Sánchez-Moyano, J.E., García-Adiego, E.M., Estacio, F.J. and García-Gómez, J.C. (2001b) Influence of the density of Caulerpa prolifera (Chlorophyta) on the composition of the macrofauna in a meadow in Algeciras Bay (Southern Spain). Ciencias Marinas 27, 4771.Google Scholar
Sánchez-Moyano, J.E., García-Asencio, I. and García-Gómez, J.C. (2007) Effects of temporal variation of the seaweed Caulerpa prolifera cover on the associated crustacean community. Marine Ecology 28, 324337.Google Scholar
Sirota, L. and Hovel, K.A. (2006) Simulated eelgrass Zostera marina structural complexity: effects of shoot length, shoot density, and surface area on the epifaunal community of San Diego Bay, California, USA. Marine Ecology Progress Series 326, 115131.Google Scholar
Smyrniotopoulos, V., Abatis, D., Tziveleka, L.-A., Tsitsimpikou, C., Roussis, V., Loukis, A. and Vagias, C. (2003) Acetylene sesquiterpenoid esters from the green alga Caulerpa prolifera. Journal of Natural Products 66, 2124.Google Scholar
Taylor, R.B. and Cole, R.G. (1994) Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. Marine Ecology Progress Series 115, 271282.Google Scholar
Thomsen, M.S., Wernberg, T., Engelen, A.H., Tuya, F., Vanderklift, M.A., Holmer, M., McGlathery, K.J., Arenas, F., Kotta, J. and Silliman, B.R. (2012) A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gaps. PloS ONE 7(1): e28595.Google Scholar
Tuya, F., Martín, J.A. and Luque, A. (2006) Seasonal cycle of a Cymodocea nodosa seagrass meadow and of the associated ichthyofauna at Playa Dorada (Lanzarote, Canary Islands, eastern Atlantic). Ciencias Marinas 32, 695704.Google Scholar
Tuya, F., Hernandez-Zerpa, H., Espino, F. and Haroun, R. (2013a) Drastic decadal decline of the seagrass Cymodocea nodosa at Gran Canaria (eastern Atlantic): interactions with the green algae Caulerpa prolifera. Aquatic Botany 105, 16.Google Scholar
Tuya, F., Png-Gonzalez, L., Riera, R., Haroun, R. and Espino, F. (2013b) Ecological function differs between landscapes dominated by seagrasses and green rhizophytic seaweeds. PloS ONE (submitted for publication).Google Scholar
Vázquez-Luis, M., Sanchez-Jerez, P. and Bayle-Sempere, J.T. (2008) Changes in amphipod (Crustacea) assemblages associated with shallow-water algal habitats invaded by Caulerpa racemosa var. cylindracea in the western Mediterranean Sea. Marine Environmental Research 65, 416426.Google Scholar
Vázquez-Luis, M., Sanchez-Jerez, P. and Bayle-Sempere, J.T. (2009) Comparison between amphipod assemblages associated with Caulerpa racemosa var. cylindracea and those of other Mediterranean habitats on soft substrate. Estuarine, Coastal and Shelf Science 84, 161170.Google Scholar
Vázquez-Luis, M., Sanchez-Jerez, P. and Bayle-Sempere, J.T. (2010) Effects of Caulerpa racemosa var. cylindracea on prey availability: an experimental approach to predation of amphipods by Thalassoma pavo (Labridae). Hydrobiologia 654, 147154.Google Scholar
Vázquez-Luis, M., Guerra-García, J.M., Carvalho, S. and Png-Gonzalez, L. (2013) A new genus and species of Caprellidae (Crustacea: Amphipoda) from Canary Islands and Cape Verde. Zootaxa 3700, 159172.Google Scholar
Verdiell-Cubedo, D., Oliva-Paterna, F.J. and Torralva-Forero, M. (2007) Fish assemblages associated with Cymodocea nodosa and Caulerpa prolifera meadows in the shallow areas of the Mar Menor coastal lagoon. Limnetica 26, 341350.Google Scholar
Virnstein, R.W. and Howard, R.K. (1987) Motile epifauna of marine macrophytes in the Indian River Lagoon, Florida. II. Comparisons between drift algae and three species of seagrasses. Bulletin of Marine Science 41, 1326.Google Scholar
Waycott, M., Duarte, C.M., Carruthers, T.J.B., Orth, R.J., Dennison, W.C., Olyarnik, S., Calladine, A., Fourqurean, J.W., Heck, K.L Jr, Hughes, A.R., Kendrick, G., Kenworthy, W.J., Short, F.T. and Williams, S.L. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. PNAS 106, 1237712381.Google Scholar
Yamada, K., Hori, M., Tanaka, Y., Hasegawa, N. and Nakaoka, M. (2010) Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan. Estuarine, Coastal and Shelf Science 86, 7182.Google Scholar