Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:57:35.617Z Has data issue: false hasContentIssue false

Composition and diversity patterns of Eunicida and Amphinomida (Annelida) associated to dead coral in the Chinchorro Bank Biosphere Reserve, Caribbean Sea

Published online by Cambridge University Press:  09 September 2019

Pablo Hernández-Alcántara
Affiliation:
Unidad Académica de Ecología y Biodiversidad Acuática, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Cd. Universitaria, Ciudad de México, 04510, México
Ismael Narciso Cruz-Pérez
Affiliation:
Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México. Batalla 5 de mayo S/N esquina Fuerte de Loreto, Colonia Ejército de Oriente, C.P. 09230, Ciudad de México, México
Vivianne Solís-Weiss*
Affiliation:
Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México. Prol. Av. Niños Héroes s/n Puerto Morelos Quintana Roo, 77580, México
*
Author for correspondence: Vivianne Solís-Weiss, E-mail: solisw@cmarl.unam.mx

Abstract

The present study is the first attempt to describe beta-diversity patterns in polychaetes of the Caribbean Sea, analysing depth changes in species composition of the Eunicida and Amphinomida inhabiting dead coral in Chinchorro Bank, southern Mexican Caribbean. In April 2008, dead coral fragments were collected by scuba diving in eight stations along two bathymetric gradients (4–9 m and 7–16.2 m depth); 755 individuals from 53 species of the families Amphinomidae, Dorvilleidae, Eunicidae, Lumbrineridae, Oenonidae and Onuphidae were identified. The highest number of species (32) and individuals (514) were found in the family Eunicidae. The Northern transect harboured 36 species, on average 18.75 ind. L−1, which decreased linearly with depth; the Central transect had 43 species, on average 19.01 ind. L−1, which increased at middle depths. The species inhabiting both these zones were moderately different (βsor = 0.603): 49.06% of the fauna occurred on both transects, but the components of beta-diversity, turnover and nestedness, displayed distinct patterns: in the Northern one replacement was the dominant factor (βsim = 0.3–1; βnes = 0–0.091), practically representing all faunal differences (βsor = 0.391–1); in the Central, dissimilarity due to nestedness increased (βnes = 0.031–0.829), mainly at the shallowest stations, but from 5 m depth, beta-diversity was almost completely explained by species replacement (βsim = 0.417–0.5; βnes = 0.031–0.318). Faunal differences were mostly related to higher abundances of Lysidice caribensis, Eunice goodei and Lumbrineris floridana in the Northern zone, and Lumbrineris perkinsi, Nicidion obtusa, Lysidice caribensis, Lumbrineris floridana, Lysidice unicornis and Eunice mutilata in the Central zone.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baselga, A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19, 134143.Google Scholar
Baselga, A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21, 12231232.Google Scholar
Bastida-Zavala, JR and Salazar-Vallejo, SI (2000) Serpúlidos (Polychaeta: Serpulidae) del Caribe noroccidental con claves para región del Gran Caribe: Salmacina, Ficopomatus, Pomatoceros, Pomatostegus, Protula, Pseudovermilia, Spirobranchus y Vermiliopsis. Revista de Biología Tropical 48, 807840.Google Scholar
Bertness, MD, Bruno, JF, Silliman, BR and Stachowicz, JJ (eds) (2014) Marine Community Ecology and Conservation. Sunderland, MA: Sinauer Associates.Google Scholar
Borda, E, Yáñez-Rivera, B, Ochoa, GM, Kudenov, D, Sanchez-Ortiz, C, Schukze, A and Rouse, GW (2015) Revamping Amphinomidae (Annelida: Amphinomida), with the inclusión of Notopygos. Zoologica Scripta 41, 307325.Google Scholar
Brigth, TJ, Kraemer, GP, Minnery, GA and Viada, ST (1984) Hermatypes of the Flower Garden Banks, Northwestern Gulf of Mexico: a comparison to other western Atlantic reefs. Bulletin of Marine Science 34, 461476.Google Scholar
Brown, BE and Odgen, JC (1993) Coral bleaching. Scientific American 268, 6470.Google Scholar
Carr, CM (2012) Polychaete diversity and distribution patterns in Canadian marine waters. Marine Biodiversity 42, 93107.Google Scholar
Carrera-Parra, LF (2006) Revision of Lumbrineris de Blainville, 1828 (Polychaeta: Lumbrineridae). Zootaxa 1336, 164.Google Scholar
Carrera-Parra, LF and Salazar-Vallejo, SI (1997) Eunícidos (Polychaeta) del Caribe mexicano con claves para las especies del Gran Caribe: Eunice. Revista de Biologia Tropical 45, 14991521.Google Scholar
Carrera-Parra, LF and Salazar-Vallejo, SI (1998) A new genus and 12 new species of Eunicidae (Polychaeta) from the Caribbean Sea. Journal of the Marine Biological Association of the United Kingdom 78, 145182.Google Scholar
Carrera-Parra, LF, Fauchald, K and Gambi, MC (2011) Revision of the taxonomic status of Lysidice (Polychaeta, Eunicidae) in the Western Caribbean Sea with observation on species reproductive features and habitat preference. Italian Journal of Zoology 78, 2740.Google Scholar
Castro-Pérez, JM, Acosta-González, G and Arias-González, JE (2011) Characterizing spatial and temporal reef fisheries in Chinchorro Bank Biosphere Reserve, northern Mesoamerican Reef System. Hidrobiológica 21, 197209.Google Scholar
Chazottes, V, Le Campion-Alsumard, T, Peyrot-Clausade, M and Cuet, P (2002) The effects of eutrophication-related alterations to coral reef communities on agents and rates of bioerosion (Reunion Island, Indian Ocean). Coral Reefs 21, 375390.Google Scholar
Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.Google Scholar
Costello, MJ, Coll, M, Danovaro, R, Halpin, P, Ojaveer, H and Miloslavich, P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110, 1–15.Google Scholar
Dean, HK (2012) A literature review of the Polychaeta of the Caribbean Sea. Zootaxa 3596, 186.Google Scholar
De Jesús-Navarrete, AJ (2003) Physical characterization of the reef lagoon at Banco Chinchorro, Mexico: an overview. Bulletin of Marine Science 73, 514.Google Scholar
Emery, AR (1968) A preliminary observation on coral reef plankton. Limnology and Oceanography 13, 293303.Google Scholar
Fauchald, K (1992) A review of the genus Eunice (Polychaeta: Eunicidae) based upon type material. Smithsonian Contributions to Zoology 523, 1422.Google Scholar
Fernández, PV, Bone, D and Rodríguez, C (2012) Cryptofaunal polychaetes from oceanic and continental reefs in Venezuela. Bulletin of Marine Science 88, 339352.Google Scholar
Frontana-Uribe, SC, Hermoso-Salazar, M and Solís-Weiss, V (2018) Sipunculans from intertidal and lower subtidal coralline substrates of the Mexican Caribbean Sea. Smithsonian Contributions to Marine Sciences 42, 169185.Google Scholar
Gaston, KJ and Blackburn, TM (2000) Pattern and Process in Macroecology. Oxford: Blackwell Science.Google Scholar
Goreau, TF, Goreau, NI and Goreau, TJ (1979) Corales y arrecifes coralinos. Investigación y Ciencia 37, 4860.Google Scholar
Gray, JS, Poore, GCB, Ugland, KI, Wilson, RS, Olsgard, F and Johannessen, O (1997) Coastal and deep-sea benthic diversities compared. Marine Ecology Progress Series 159, 97103.Google Scholar
Hernández-Alcántara, P, Salas-de León, DA, Solís-Weiss, V and Monreal-Gómez, MA (2014) Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific. Journal of Sea Research 91, 7987.Google Scholar
Hutchings, PA (1983) Perspectives on coral reefs. In Barnes, D (ed.), Cryptofaunal Communities of Coral Reefs. Sydney: Australian Institute of Marine Sciences, pp. 200208.Google Scholar
Hutchings, PA (1986) Biological destruction of coral reefs – a review. Coral Reefs 4, 239252.Google Scholar
Hutchings, PA (2008) Role of polychaetes in bioerosion of coral substrates. In Wisshak, M and Tapanila, L (eds), Current Developments in Bioerosion. Berlin: Springer-Verlag, pp. 249264.Google Scholar
Hutchings, PA and Peyrot-Clausade, M (1988) Macroinfaunal boring communities of Porites. A biogeographical comparison. Proceedings 6th International Coral Reef Symposium Australia 3, 263267.Google Scholar
Ibarzabal, D (1993) Distribución y abundancia de la macrofauna bentónica vágil en tres arrecifes de la plataforma suroccidental de Cuba. Avicennia 0, 84–111.Google Scholar
INE (2000) Programa de Manejo Reserva de la Biosfera Banco Chinchorro. México: INE-SEMARNAP.Google Scholar
Jaccard, P (1912) The distribution of the flora in the alpine zone. New Phytologist 11, 3750.Google Scholar
Jordán, E and Martin, E (1987) Chinchorro: morphology and composition of a Caribbean atoll. Atoll Research Bulletin 310, 120.Google Scholar
Legendre, P (2014) Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 13241334.Google Scholar
Mackie, ASY and Oliver, PG (1996) Marine macrofauna: polychaetes, molluscs and crustaceans. In Hall, GS (ed.), Methods for the Examination of Organismal Diversity in Soils and Sediments. Wallingford: CABI, pp. 263284.Google Scholar
Miloslavich, P, Díaz, JM, Klein, E, Alvarado, JJ, Díaz, C, Gobin, J, Escobar-Briones, E, Cruz-Motta, JJ, Weil, E, Cortés, J, Bastidas, AC, Robertson, R, Zapata, F, Martín, A, Castillo, J, Kazandjian, A and Ortiz, M (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS ONE 5, e11916, 1–25.Google Scholar
Moreno, RA, Rivadeneira, MM, Hernández, CE, Sampértegui, S and Rozbaczylo, N (2008) Do Rapoport's rule, the mid-domain effect or the source-sink hypothesis predict bathymetric patterns of polychaete richness on the Pacific coast of South America? Global Ecology and Biogeography 17, 415423.Google Scholar
Ochoa-Rivera, V, Granados-Barba, A and Solís-Weiss, V (2000) The polychaete cryptofauna from Cozumel Island, Mexican Caribbean. Bulletin of Marine Science 67, 137146.Google Scholar
Paxton, H (2000) Family Eunicidae. In Beesley, PL, Ross, GJB and Glasby, CJ (eds), Polychaetes & Allies: The Southern Synthesis. Fauna of Australia, vol. 4A: Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula. Melbourne: CSIRO Publishing, pp. 9194.Google Scholar
Qian, H, Ricklefs, RE and White, PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecology Letters 8, 1522.Google Scholar
Ramírez-Hernández, A (2014) Abundancia, Distribución y diversidad de los Polychaeta (Annelida) Asociados a sustratos de Coral Muerto del Arrecife Alacranes, sur del Golfo de México. México: Tesis Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México.Google Scholar
Read, G and Fauchald, K (eds) (2018) World Polychaeta database. Amphinomida. Eunicida. Accessed through: World Register of Marine Species. Available at http://www.marinespecies.org/aphia.php?p=taxdetails&id=895 (Accessed 23 May 2018).Google Scholar
Roberts, MR, McClean, CJ, Veron, JEN, Hawkins, JP, Allen, GR, McAllister, DE, Mittermeier, CG, Schuelter, FW, Spalding, M, Wells, F, Vynne, C and Werner, TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 12801284.Google Scholar
Ruiz-Abierno, A and Armenteros, M (2017) Coral reef habitats strongly influence the diversity of macro and meiobenthos in the Caribbean. Marine Biodiversity 47, 101111.Google Scholar
Salazar-Vallejo, SI (1996) Filodócidos (Polychaeta: Phyllodocidae) del Caribe Mexicano con claves para identificar las especies del Gran Caribe. Revista de Biologia Tropical 44, 107122.Google Scholar
Salazar-Vallejo, SI (1997) Anfinómidos y eufrosínidos (Polychaeta) del Caribe Mexicano con claves para las especies reconocidas del Gran Caribe. Revista de Biologia Tropical 44, 379390.Google Scholar
Simpson, GG (1943) Mammals and the nature of continents. American Journal of Science 241, 131.Google Scholar
Sørensen, TA (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter 5, 134.Google Scholar
Tribollet, A, Decherf, G, Hutchings, P and Peyrot-Clausade, M (2002) Large-scale spatial variability in bioerosion of experimental coral substrates on the Great Barrier Reef (Australia): importance of microborers. Coral Reefs 21, 424432.Google Scholar
Uebelacker, JM and Johnson, PG (eds) (1984) Taxonomic Guide to the Polychaetes of the Northern Gulf of Mexico, vol. 7. Final report to the minerals management service, contract 14-12-001-29091. Mobile, AL: Barry A. Vittor & Associates, Inc.Google Scholar
Ulrich, W and Gotelli, NJ (2007) Null model analysis of species nestedness patterns. Ecology 88, 18241831.Google Scholar
UNEP/IUCN (1988) Coral Reefs of the World, vol. 1. Atlantic and Eastern Pacific. Nairobi: UNEP-IUCN.Google Scholar
Whittaker, RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30, 280338.Google Scholar
Wright, DH and Reeves, JH (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia 92, 416428.Google Scholar