Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:09:08.429Z Has data issue: false hasContentIssue false

Connecting pH with body size in the marine gastropod Trophon geversianus in a latitudinal gradient along the south-western Atlantic coast

Published online by Cambridge University Press:  11 November 2016

Mariano E. Malvé*
Affiliation:
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sársfield 299 X5000JJC Córdoba, Argentina
Sandra Gordillo
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET-UNC), Av. Vélez Sársfield 1611 X5016GCA Córdoba, Argentina
Marcelo M. Rivadeneira
Affiliation:
Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas (CEAZA) & Universidad Católica del Norte, Av. Bernardo Ossandón 877, C.P. 1781681, Coquimbo, Chile
*
Correspondence should be addressed to: M.E. Malvé, Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Av. Vélez Sársfield 299 X5000JJC Córdoba, Argentina email: marianomalve@gmail.com

Abstract

There is growing concern about the impact of contemporaneous ocean acidification on marine ecosystems, but strong evidence for predicting the consequences is still scant. We have used the gastropod Trophon geversianus as a study model for exploring the importance of oceanographic variables (sea surface temperature, chlorophyll a, oxygen, calcite and pH) on large-scale latitudinal variation in mean shell length and relative shell weight. Data were collected from a survey carried out in 34 sites along ~1600 km. Neither shell length nor relative shell weight showed any monotonic latitudinal trend, and the patterns of spatial variability were rather complex. After correcting for spatial autocorrelation, only pH showed a significant correlation with mean shell length and relative shell weight, but contrary to expectations, the association was negative in both cases. We hypothesize that this could mirror the negative effect of acidification on growth rate, which may cause larger asymptotic size. Latitudinal trends of body size variation are not easy to generalize using ecogeographic rules, and may be the result of a complex interaction of environmental drivers and life-history responses.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, C., Montiel, A. and Quiroga, E. (2009) Estimación de producción secundaria y productividad para una población intermareal de Trophon geversianus (Bahía Laredo, Estrecho de Magallanes). Anales del Instituto de la Patagonia 37, 7384.Google Scholar
Angilletta, M.J. Jr and Dunham, A.E. (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist 162, 332342.CrossRefGoogle ScholarPubMed
Atkinson, D. (1994) Temperature and organism size: a biological law for ectotherms? Advances in Ecological Research 25, 154.Google Scholar
Balech, E. and Ehrlich, M.S. (2008) Esquema biogeográfico del mar Argentino. Revista de Investigación y Desarrollo Pesquero 19, 4575.Google Scholar
Beerling, D.J. and Berner, R.A. (2002) Biogeochemical constraints on the Triassic-Jurassic boundary carbon cycle event. Global Biogeochemical Cycles 16, 113.Google Scholar
Behrensmeyer, A.K., Kidwell, S.M. and Gastaldo, R.A. (2009) Taphonomy and paleobiology. Paleobiology 26, 103147.Google Scholar
Berke, S.K., Jablonski, D., Krug, A.Z., Roy, K. and Tomasovych, A. (2013) Beyond Bergmann's rule: size–latitude relationships in marine Bivalvia world-wide. Global Ecology and Biogeography 22, 173183.CrossRefGoogle Scholar
Briones, C., Rivadeneira, M.M., Fernández, M. and Guiñez, R. (2014) Geographical variation of shell thickness in the mussel Perumytilus purpuratus along the Southeast Pacific Coast. Biological Bulletin 227, 221231.Google Scholar
Cardoso, J.F., van der Veer, H.W. and Kooijman, S.A. (2006) Body-size scaling relationships in bivalve species: a comparison of field data with predictions by the Dynamic Energy Budget (DEB) theory. Journal of Sea Research 56, 125139.Google Scholar
Chapelle, G. and Peck, L.S. (1999) Polar gigantism dictated by oxygen availability. Nature 399, 114115.Google Scholar
Cumplido, M., Averbuj, A. and Bigatti, G. (2010) Reproductive seasonality and oviposition induction in Trophon geversianus (Gastropoda: Muricidae) from Golfo Nuevo, Argentina. Journal of Shellfish Research 29, 423428.Google Scholar
Dale, M.R. and Fortin, M.J. (2009) Spatial autocorrelation and statistical tests: some solutions. Journal of Agricultural, Biological and Environmental Statistics 14, 188206.CrossRefGoogle Scholar
Fisher, J.A., Frank, K.T. and Leggett, W.C. (2010) Breaking Bergmann's rule: truncation of Northwest Atlantic marine fish body sizes. Ecology 91, 24992505.CrossRefGoogle ScholarPubMed
Frank, P.W. (1975) Latitudinal variation in the life history features of the black turban snail Tegula funebralis (Prosobranchia: Trochidae). Marine Biology 31, 181192.Google Scholar
Gazeau, F.P.H., Gattuso, J.A., Dawber, C., Pronker, A.E., Peene, F., Peene, J., Heip, C.H.R. and Middelburg, J.J. (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7, 20512060.CrossRefGoogle Scholar
Gordillo, S. and Archuby, F. (2014) Live-live and live-dead interactions in marine death assemblages: the case of the Patagonian clam Venus antiqua. Acta Palaeontologica Polonica 59, 429442.Google Scholar
Gordillo, S., Bayer, M.S., Boretto, G. and Charó, M. (2014) Mollusk shells as bio-geo-archives: evaluating environmental changes during the Quaternary, 1st edition. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Gordillo, S., Coronato, A.M.J. and Rabassa, J.O. (2005) Quaternary molluscan faunas from the island of Tierra del Fuego after the Last Glacial Maximum. Scientia Marina 69, 337348.CrossRefGoogle Scholar
Griffin, M. and Pastorino, G. (2005) The genus Trophon Monfort, 1810 (Gastropoda: Muricidae) in the Tertiary of Patagonia. Journal of Paleontology 79, 296311.Google Scholar
Guinotte, J.M. and Fabry, V.J. (2008) Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences 1134, 320342.CrossRefGoogle ScholarPubMed
Heinze, J., Foitzik, S., Fischer, B., Wanke, T. and Kipyatkov, V.E. (2003) The significance of latitudinal variation in body size in a holarctic ant, Leptothorax acervorum. Ecography 26, 349355.Google Scholar
Hidalgo, F.J., Barón, P.J. and Orensanz, J.M.L. (2005) A prediction come true: the green crab invades the Patagonian coast. Biological Invasions 7, 547552.Google Scholar
Hidalgo, F.J., Silliman, B.R., Bazterrica, M.C. and Bertness, M.D. (2007) Predation on the rocky shores of Patagonia, Argentina. Estuaries and Coasts 30, 886894.Google Scholar
Ho, C.K., Pennings, S.C. and Carefoot, T.H. (2010) Is diet quality an overlooked mechanism for Bergmann's rule? American Naturalist 175, 269276.Google Scholar
Hughes, L. (2000) Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15, 5661.Google Scholar
Irie, T., Morimoto, N. and Fischer, K. (2013) Higher calcification costs at lower temperatures do not break the temperature-size rule in an intertidal gastropod with determinate growth. Marine Biology 160, 26192629.Google Scholar
Kidwell, S.M. (2002) Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30, 803806.Google Scholar
Kidwell, S.M. and Tomasovych, A. (2013) Implications of time-averaged death assemblages for ecology and conservation biology. Annual Review of Ecology, Evolution, and Systematics 44, 539563.CrossRefGoogle Scholar
Kroeker, K.J., Kordas, R.L., Crim, R., Hendriks, I.E., Ramajo, L., Singh, G.S., Duarte, C.M. and Gattuso, J.P. (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19, 18841896.Google Scholar
Kurihara, H. (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology-Progress Series 373, 275284.Google Scholar
Lee, H.J. and Boulding, E.G. (2010) Latitudinal clines in body size, but not in thermal tolerance or heat-shock cognate 70 (HSC70), in the highly-dispersing intertidal gastropod Littorina keenae (Gastropoda: Littorinidae). Biological Journal of the Linnean Society 100, 494505.Google Scholar
Linse, K., Barnes, D.K. and Enderlein, P. (2006) Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient. Deep Sea Research Part II: Topical Studies in Oceanography 53, 921931.CrossRefGoogle Scholar
Márquez, F., Vilela, R.A.N., Lozada, M. and Bigatti, G. (2015) Morphological and behavioral differences in the gastropod Trophon geversianus associated to distinct environmental conditions, as revealed by a multidisciplinary approach. Journal of Sea Research 95, 239247.CrossRefGoogle Scholar
Meiri, S. (2011) Bergmann's Rule – what's in a name? Global Ecology and Biogeography 20, 203207.Google Scholar
Narita, D., Rehdanz, K. and Tol, R.S. (2012) Economic costs of ocean acidification: a look into the impacts on global shellfish production. Climatic Change 113, 10491063.CrossRefGoogle Scholar
Pastorino, G. (2005) A revision of the genus Trophon Montfort, 1810 (Gastropoda: Muricidae) from southern South America. The Nautilus 119, 5582.Google Scholar
Penchaszadeh, P.E. (1976) Reproducción de gasterópodos prosobranquios del Atlántico suroccidental: el género Trophon. Physis 35, 6976.Google Scholar
Rangel, T.F., Diniz-Filho, L.V.B. and Bini, L.M. (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33, 4650.Google Scholar
Schmidt-Nielsen, K. (1984) Scaling: why is animal size so important? 1st edition. Cambridge: Cambridge University Press.Google Scholar
Solomon, S. (ed.) (2007) Climate change 2007 – the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4), 1st edition. Cambridge: Cambridge University Press.Google Scholar
Takahashi, T., Sutherland, S.C., Chipman, D.W., Goddard, J.G., Ho, C., Newberger, T., Sweeney, C. and Munro, D. (2014) Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Marine Chemistry 164, 95125.Google Scholar
Talmage, S.C. and Gobler, C.J. (2010) Effects of past, present and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences USA 107, 1724617251.Google Scholar
Tyberghein, L., Verbruggen, H., Pauly, K., Troupin, C., Mineur, F. and De Clerck, O. (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21, 272281.CrossRefGoogle Scholar
Trussell, G.C. (2000) Phenotypic clines, plasticity, and morphological trade-offs in an intertidal snail. Evolution 54, 151166.Google Scholar
Warwick, R.M. and Turk, S.M. (2002) Predicting climate change effects on marine biodiversity: comparison of recent and fossil molluscan death assemblages. Journal of the Marine Biological Association of the United Kingdom 82, 847850.Google Scholar
Watson, S.A., Peck, L.S., Tyler, P.A., Southgate, P.C., Tan, K.S., Day, R.W. and Morley, S.A. (2012) Marine invertebrate skeleton size varies with latitude, temperature and carbonate saturation: implications for global change and ocean acidification. Global Change Biology 18, 30263038.Google Scholar
Watt, C., Mitchell, S. and Salewski, V. (2010) Bergmann's rule; a concept cluster? Oikos 119, 89100.Google Scholar
Zaixso, H.E. (1973) Observaciones sobre el desove y embriología de Trophon geversianus (Pallas) 1974 (Gastrópoda, Muricidae). Contribución Científica 101, 156162.Google Scholar