Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T00:48:34.030Z Has data issue: false hasContentIssue false

Developmental biology of Acetabularia

Published online by Cambridge University Press:  11 May 2009

Silvano Bonotto
Affiliation:
Department of Animal Biology, University of Turin, Via Accademia Albertina 17, 10123 Torino, Italy

Extract

Acetabularia (Dasycladaceae: Chlorophyta) is a giant unicellular marine alga possessing a single nucleus but several millions of chloroplasts and mitochondria. It presents a polar growth and a peculiar morphological differentiation, comprising the development of a branched rhizoid at its basal end, where the nucleus is located, and the formation of several seriated whorls and then a reproductive cap at the apex of the stalk. Acetabularia is particularly useful in many fields of cellular and molecular biology. Recent work and current ideas on its developmental biology are summarized and discussed.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arasaki, S., 1942. On the life-history of Acetabularia calyculus Quoy & Gaimard. Botanical Magazine, Tokyo, 56, 383391. [In Japanese.]CrossRefGoogle Scholar
Babloyantz, A., Hiernaux, J. & Prigogine, I., 1975. Some remarks on thermodynamics and kinetics of self-organization. In Molecular biology of nudeocytoplasmic relationships (ed. S., Puiseux-Dao), pp. 315323. Amsterdam: Elsevier.Google Scholar
Bannwarth, H., 1985. On the morphogenetic capacity of secondary nuclei in Acetabularia crenulata. In Acetabularia 1984 BIG 583 (ed. S., Bonottoet al.), pp. 121138. Mol: Belgian Nuclear Center.Google Scholar
Bannwarth, H., Schmitz, E., Röpert, H.G. & Timm, U., 1985. Damages on Acetabularia mediterranea cells grown in culture caused by the marine water-flea Elasmopus rapax Costa (Melitidae, Gammaridea, Amphipoda). In Acetabularia 1984, BLG 583 (ed. S., Bonottoet al.), pp. 5365. Mol: Belgian Nuclear Center.Google Scholar
Bargiello, T.A., Jackson, F.R. & Young, M.W., 1984. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature, London, 312, 5254.CrossRefGoogle ScholarPubMed
Berger, S., 1990a. Acetabularia: a giant unicellular organism for studying polarity. In Experimental embryology in aquatic plants and animals (ed. H.-J., Marthy), pp. 2140. New York: Plenum Press.CrossRefGoogle Scholar
Berger, S., 1990b. Dasycladaceae: a family of giant unicellular algae ideal for research. In Experimental embryology in aquatic plants and animals (ed. H.-J., Marthy), pp. 39. New York: Plenum Press.CrossRefGoogle Scholar
Berger, S., Groot, E.J. de, Neuhaus, G. & Schweiger, M., 1987. Acetabularia: a giant single cell organism with valuable advantages for cell biology. European Journal of Cell Biology, 44, 349370.Google Scholar
Berger, S. & Kaever, M.J., 1992. Dasycladales. An illustrated monograph of a fascinating algal order. Stuttgart: Georg Thieme Verlag.Google Scholar
Berger, S. & Schweiger, H.G., 1975. The ultrastructure of the nucleocytoplasmic interface in Acetabularia. In Molecular biology of nucleocytoplasmic relationships (ed. S., Puiseux-Dao), pp. 243250. Amsterdam: Elsevier.Google Scholar
Bonotto, S., 1988. Recent progress in research on Acetabularia and related Dasycladales. In Progress in phycological research, vol. 6 (ed. F.E., Round and D.J., Chapman), pp. 59235. Bristol: Biopress.Google Scholar
Bonotto, S., Kirchmann, R. & Manil, P., 1971a. Cell engineering in Acetabularia: a graft method for obtaining large cells with two or more reproductive caps. Giornale Botanico Italiano, 105, 19.CrossRefGoogle Scholar
Bonotto, S., Puiseux-Dao, S., Kirchmann, R. & Brachet, J., 1971b. Faits et hypothéses sur le contrôle de 1’ alternance morphogénétique croissance végétative – différentiation de l’ appareil reproducteur chez les Acetabularia mediterranea Lamouroux, A. crenulata Lamouroux et Halicoryne spicata (Kützing) Solms-Laubach. Comptes Rendus de l’ Académie des Sciences. Paris, 272, 392395.Google Scholar
Bonotto, S. & Sironval, C., 1977. Experimental studies on the phototropism of Acetabularia mediterranea and Acetabularia crenulata. In Progress in Acetabularia research (ed. C.L.F., Wood-cock), pp. 241247. New York: Academic Press.Google Scholar
Brachet, J., 1952. The role of the nucleus and the cytoplasm in synthesis and morphogenesis. Symposia of the Society for Experimental Biology. Cambridge, 6, 173199.Google Scholar
Brachet, J. 1968. Synthesis of macromolecules and morphogenesis in Acetabularia. In Current topics in developmental biology, vol. 3 (ed. A., Monroy and A., Moscona), pp. 136. New York: Academic Press.Google Scholar
Cairns, E., Gschwender, H.H., Primke, M., Yamakawa, M., Traub, P. & Schweiger, H.G., 1978. Translation of animal virus in the cytoplasm of a plant cell. Proceedings of the National Academy of Sciences of the United States of America, 75, 55575559.CrossRefGoogle ScholarPubMed
Castillo, F.J., Cotton, G., Kevers, C., Greppin, H., Gaspar, T. & Vanden, Driessche T., 1986. Changes in ascorbic acid content and ascorbate peroxidase activity during the development of Acetabularia mediterranea. Differentiation, 33, 1723.CrossRefGoogle Scholar
Crawley, J.C.W., 1966. Some observations on the fine structure of the gametes and zygotes of Acetabularia. Planta, 69, 365376.CrossRefGoogle ScholarPubMed
Crawley, J.C.W., 1970. The fine structure of the gametes and zygotes of Acetabularia. In Biology of Acetabularia (ed. J., Brachet and S., Bonotto), pp. 7383. New York: Academic Press.CrossRefGoogle Scholar
Caubergs, R., Vanden, Driessche T. & De Greef, J.A., 1984. A light-inducible cytochrome b reduction in the green alga Acetabularia. In Blue light effects in biological systems (ed. H., Senger), pp. 173176. Berlin: Springer Verlag.CrossRefGoogle Scholar
De, D.N. & Berger, S., 1990. Karyology of Acetabularia mediterranea. Protoplasma, 155, 1928.CrossRefGoogle Scholar
Dübel, S., Neuhaus, G., Berger, S. & Schweiger, H.G., 1985. Characterization of haploid Acetabularia cells. European Journal of Cell Biology, 38, 328334.Google Scholar
Franke, W.W., Berger, S., Falk, H., Spring, H., Scheer, U., Herth, W., Trendelenburg, M.F. & Schweiger, H.G., 1974. Morphology of the nucleo-cytoplasmic interactions during the development of Acetabularia cells. 1. The vegetative phase. Protoplasma, 82, 249282.CrossRefGoogle Scholar
Gibor, A., 1977. Cell elongation in Acetabularia. In Progress in Acetabularia research (ed. C.L.F., Woodcock), pp. 231239. New York: Academic Press.Google Scholar
Goodwin, B.C. & Trainor, L.E.H., 1985. Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. Journal of Theoretical Biology, 117, 70106.CrossRefGoogle Scholar
Green, B.R., 1976. Abnormal cells resulting from asexual reproduction in Acetabularia (Chlorophyceae, Siphonales). Phycologia, 15, 161164.CrossRefGoogle Scholar
Green, B.R. & Burton, H., 1970. Acetabularia chloroplast DNA: electron microscopic visualization. Science, New York, 188, 981982.CrossRefGoogle Scholar
Hämmerling, J., 1931. Entwicklung und Formbildungsvermögen von Acetabularia mediterranea. 1.Die normale Entwicklung. Biologisches Zentralblatt, 51, 633647.Google Scholar
Hämmerling, J., 1934a. Entwicklungsphysiologische und genetische Grundlagen der Formbildung bei der Schirmalge Acetabularia. Naturwissenschaften. Berlin, 22, 829836.CrossRefGoogle Scholar
Hämmerling, J., 1934b. Über formbildende Substanzen bei Acetabularia mediterranea, ihre räumliche und zeitliche Verteilung und ihre Herkunft. Archiv fur Entwickungsmechanik der Organismen, 131, 181.CrossRefGoogle Scholar
Hämmerling, J., 1940. Transplantationsversuchezwischen Acetabularia mediterranea und Acetabularia crenulata. Note dell Istituto Halo-Germanico di Biologia Marina di Rovigno d’ lstria, 2, 37.Google Scholar
Hämmerling, J., 1953. Nucleocytoplasmic relationships in the development of Acetabularia. Inter-national Review of Cytology, 2, 475498.CrossRefGoogle Scholar
Hämmerling, J., 1963. The role of the nucleus in differentiation in Acetabularia. Symposia of the Society for Experimental Biology. Cambridge, 17, 127137.Google Scholar
Harrison, L.G. & Hillier, N.A., 1985. Quantitative control of Acetabularia morphogenesis by extracellular calcium: a test of kinetic theory. Journal of Theoretical Biology, 114, 177192.CrossRefGoogle Scholar
Harrison, L.G., Hillier, N.A., Glover, J.N.M. & Wallis, P., 1985. Whorl morphogenesis in Acetabularia mediterranea: the role of membrane-bound calcium. In Acetabularia 1984 BLG 583 (ed. S., Bonotto et al.), pp. 109119. Mol: Belgian Nuclear Center.Google Scholar
Harrison, L.G., Snell, J., Verdi, R., Vogt, D.E., Zeiss, G.D. & Green, B.R., 1981. Hair morphogenesis in Acetabularia mediterranea: temperature-dependent spacing and models of morphogen waves. Protoplasma, 106, 211221.CrossRefGoogle Scholar
Issinger, O., Maass, I. & Clauss, H., 1971. Photosyntheseintensitat der Stielregionen von Acetabularia mediterranea. Planta, 101, 360364.CrossRefGoogle Scholar
Kellner, G. & Werz, G., 1969. Die Feinstruktur des Augenfleckes bei Acetabularia Gameten und sein Verhalten nach der Gametenfusion. Protoplasma, 67, 117120.CrossRefGoogle Scholar
Kleinschmidt, A.K., 1968. Monolayer techniques in electron microscopy of nucleic acid molecules. In Methods in enzymology, vol. 2, part B (ed. L., Grossman and K., Moldave), pp. 361377. New York: Academic Press.Google Scholar
Kloppstech, K. & Schweiger, H.G., 1975. Polyadenylated RNA from Acetabularia. Differentiation, 4, 115123.CrossRefGoogle Scholar
Kloppstech, K. & Schweiger, H.G., 1976. In vitro translation of poly(A)RNA from Acetabularia. Cytobiologie, 13, 394400.Google Scholar
Li-Weber, M., Groot, E.J. de & Schweiger, H.G., 1987. Sequence homology to the Drosophila per locus in higher plant nuclear DNA and in Acetabularia chloroplast DNA. Molecular General Genetics, 209, 17.CrossRefGoogle Scholar
Li-Weber, M. & Schweiger, H.G., 1985. Evidence for and mechanism of translation control during cell differentiation in Acetabularia. European Journal of Cell Biology, 38, 7378.Google Scholar
Lüttke, A. & Bonotto, S., 1982. Chloroplasts and chloroplast DNA of Acetabularia mediterranea: facts and hypotheses. International Review of Cytology, 77, 205242.CrossRefGoogle Scholar
Mattioli, P.A., 1586. De plantis epitome utilissima. Francofurti ad Moenum.Google Scholar
Mazza, A. & Casale, A., 1991. Molecular heterogeneities of green algae extranuclear genomes. Preliminary characterization of two coenocytic green algae extranuclear genomes and phylo-genetic implications. Oebalia, 17, supplement 2, 509528.Google Scholar
Menzel, D., 1986. Visualization of cytoskeletal changes through the life cycle of Acetabularia. Protoplasma, 134, 3042.CrossRefGoogle Scholar
Pâques, M. & Brouers, M., 1984. Effect of light on the chloroplast distribution along the stalk of Acetabularia acetabulum L. (Silva). In Advances in photosynthesis research, vol. 4 (ed. C., Sybesma), pp. 841844. The Hague: Martinus Nijhoff/Dr W. Yunk Publishers.CrossRefGoogle Scholar
Parkinson, J., 1640. Theatrum botanicum (the theatre of plants), pp. 13021303. London: Thos Cotes.Google Scholar
Primke, M., Berger, S. & Schweiger, H.G., 1978. Protoplasts from Acetabularia: isolation and fusion. Cytobiologie, 16, 375380.Google ScholarPubMed
Puiseux-Dao, S., 1970. Acetabularia and cell biology. London: Logos Press.Google Scholar
Puiseux-Dao, S., 1979. Mouvements cytoplasmiques et morphogenese chez 1'Acetabularia mediterranea. Biologie Cellulaire, 34, 8390.Google Scholar
Puiseux-Dao, S. & Dazy, A.C., 1970. Plastid structure and the evolution of plastids in Acetabularia. In Biology of Acetabularia (ed. J., Brachet and S., Bonotto), pp. 111122. New York: Academic Press.CrossRefGoogle Scholar
Puiseux-Dao, S., Valet, G. & Bonotto, S., 1970. Greffes intérspecifiques uninuclées, Acetabularia mediterranea et A. peniculus et mobilité des substances morphogénétiques dans le cytoplasme. Comptes Rendus de l' Académie des Sciences. Paris, 271, 13541357.Google Scholar
Reddy, P., Zehring, W.A., Wheeler, D.A., Pirrotta, V., Hadfield, C., Hall, J. & Rosbach, M., 1984. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell, 38, 701710.CrossRefGoogle ScholarPubMed
Rommelaere, J. & Hiernaux, J., 1975. Model for the positional differentiation of the cap in Acetabularia. Biosystems, 7, 250258.CrossRefGoogle ScholarPubMed
Schmid, R., 1984. Blue light effects on morphogenesis and metabolism in Acetabularia. In Blue light effects in biological systems (ed. H., Senger), pp. 419432. Berlin: Springer Verlag.CrossRefGoogle Scholar
Schneider, S.U., Leible, M.B. & Yang, X.-P., 1989. Strong homology between the small subunit of ribulose-l,5-biphosphate carboxylase/oxygenase of two species of Acetabularia and the occurrence of unusual codon usage. Molecular and General Genetics, 218, 445452.CrossRefGoogle Scholar
Schweiger, H.G., 1966. Ribonuclease Aktivität in Acetabularia. Planta, 68, 247255.CrossRefGoogle ScholarPubMed
Schweiger, H.G., 1969. Cell biology of Acetabularia. Current Topics in Microbiology and Immunology, 50, 136.CrossRefGoogle ScholarPubMed
Schweiger, H.G., 1980. The role of compartmentation in cell morphogenesis and development. In Cell compartmentation and metabolic channeling (ed. Nover, L.et al.), pp. 455463. Jena: VEB Gustav Fisher and Amsterdam: Elsevier/North-Holland Biomedical Press.Google Scholar
Schweiger, H.G. & Berger, S., 1981. Pattern formation in Acetabularia. In Cytomorphogenesis in plants. Cell biology monographs, vol. 8 (ed. O., Kiermayer), pp. 119145. Wien: Springer Verlag.CrossRefGoogle Scholar
Schweiger, H.G., Master, R.W.P. & Werz, G., 1967. Nuclear control of a cytoplasmic enzyme in Acetabularia. Nature, London, 216, 554557.CrossRefGoogle ScholarPubMed
Shihira-Ishikawa, I. & Kuroiwa, T., 1984. Morphological transition of the nucleus during the whole life cycle of Acetabularia calyculus Quoy & Gaimard. Japanese Journal of Phycology, 32, 147157.Google Scholar
Shoeman, R.L., Neuhaus, G. & Schweiger, H.G., 1983. Gene expression in Acetabularia. III. Comparison of stained cytosolic proteins and in vivo and in vitro translation products. Journal of Cell Science, 60, 112.CrossRefGoogle ScholarPubMed
Shoeman, R.L. & Schweiger, H.G., 1982. Gene expression in Acetabularia. II. Analysis of in vitro translation products. Journal of Cell Science, 58, 3548.CrossRefGoogle ScholarPubMed
Spring, H. & Franke, W.W., 1981. Transcriptionally active chromatin loops of lamp-brush chromosomes at physiological salt concentrations as revealed by electron microscopy of sections. European Journal of Cell Biology, 24, 298308.Google Scholar
Spring, H., Trendelenburg, M.F., Sheer, U., Franke, W.W. & Herth, W., 1974. Structural and biochemical studies of the primary nucleus of two algal species, Acetabularia mediterranea and Acetabularia major. Cytobiologie, 10, 165.Google Scholar
Trendelenburg, M.F., Meissner, B., Troster, H., Berger, S. & Spring, H., 1988. Direct visualization of intranuclear lamp-brush chromosome gene domains using videomicroscopy. Cell Biology International Reports, 12, 737763.CrossRefGoogle Scholar
Tymms, M.J. & Schweiger, H.G., 1985. Tandemly repeated non-ribosomal DNA sequences in the chloroplast genome of an Acetabularia mediterranea strain. Proceedings of the National Academy of Sciences of the United States of America, 82, 17061710.CrossRefGoogle Scholar
Valet, G., 1968. Contribution á l’ étude des Dasydadales. Thesis, University of Paris.Google Scholar
Valet, G., 1969. Contribution á 1’ étude des Dasycladales. 2. Cytologie et reproduction. 3. Révision systématique. Nova Hedwigia, 17, 551644.Google Scholar
Vanden, Driessche T., 1967. The nuclear control of the chloroplasts circadian rhythms. Science Progress. London, 55, 293303.Google Scholar
Vanden, Driessche T. & Caubergs, R., 1985. Inhibiting the transduction of blue light signals in Acetabularia. In Acetabularia 1984 BLG 583 (ed. S., Bonotto et al.), pp. 91100. Mol: Belgian Nuclear Center.Google Scholar
Zehring, W.A., Wheeler, D.A., Reddy, P., Konopka, J., Kyriacou, C.P., Rosbach, M. & Hall, J.C., 1984. P-element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell, 39, 369376.CrossRefGoogle ScholarPubMed