Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T03:44:47.476Z Has data issue: false hasContentIssue false

Diel rhythms in shallow Mediterranean rocky-reef fishes: a chronobiological approach with the help of trained volunteers

Published online by Cambridge University Press:  25 September 2012

Ernesto Azzurro
Affiliation:
ISPRA, National Institute of Environmental Protection and Research, Sts Livorno, Piazzale dei Marmi 2, 57123, Livorno, Italy
Jacopo Aguzzi
Affiliation:
Instituto de Ciencias del Mar (ICM-CSIC); Paseo Maritímo de la Barceloneta, 37-49. 08003 Barcelona, Spain
Francesc Maynou
Affiliation:
Instituto de Ciencias del Mar (ICM-CSIC); Paseo Maritímo de la Barceloneta, 37-49. 08003 Barcelona, Spain
Juan José Chiesa
Affiliation:
Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Buenos Aires, Argentina
Dario Savini*
Affiliation:
DiSTA—Dipartimento di Scienze della Terra e dell'Ambiente, Sezione Ambiente Via S. Epifanio 14, 27100 Pavia, Italy For-Mare, Via Lovati 33, 27100 Pavia, Italy
*
Correspondence should be addressed to: D. Savini, DiSTA—Dipartimento di Scienze della Terra e dell'Ambiente, Sezione Ambiente Via S. Epifanio 14, 27100 Pavia, Italy email: dario.savini@unipv.it

Abstract

Behavioural rhythms in marine species have been mostly investigated in laboratory organisms and their expression within the animals' natural environments remains largely unknown. Here, we studied diel (i.e. 24-hours-based) and intra-diel (i.e. 12-hours-based) rhythmic variations in the abundance of seven shallow rocky-reef fish species, namely Coris julis, Epinephelus marginatus, Sarpa salpa, Serranus cabrilla, Serranus scriba, Sparisoma cretense and Thalassoma pavo, along the rocky shores of Linosa Island (Mediterranean Sea). Data were visually collected by trained volunteers along fixed transects at 3-hourly intervals throughout six consecutive 24-hours periods. Density estimates can vary greatly between consecutive days and during 24-hours periods according not only to the major day–night changeover but also to minor intra-diel variations at the daylight hours. In the case of T. pavo, C. julis, S. cabrilla and S. salpa waveform analyses showed midday troughs in abundance within the 24-hours period but significant variation within the hours of daylight was highlighted only for T. pavo. Although results were not conclusive at the intra-dial level, the employment of volunteers represented a valuable tool for chronobiology, suitable to improve our understanding of fish behaviour in natural systems.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguzzi, J. and Bahamon, N. (2009) Modelled day–night biases in decapod assessment by bottom trawling survey. Fisheries Research 100, 274280.Google Scholar
Aguzzi, J., Bahamon, N. and Marotta, L. (2009) Modulation of activity rhythms in continental margin decapods by light availability and predatory behaviour of Nephrops norvegicus . Marine Ecology 30, 366375.CrossRefGoogle Scholar
Aguzzi, J., Chiesa, J.J., Caprioli, R., Cascione, D., Magnifico, G., Rimatori, V. and Costa, C. (2006) Preliminary evidences of circadian fan activity rhythm in Sabella spallanzanii (Gmelin, 1791) (Polychaeta: Sabellidae). Scientia Marina 70, 727–724.Google Scholar
Aguzzi, J., Costa, C., Furushima, Y., Chiesa, J.J., Company, J.B., Menesatti, P., Iwase, R. and Fujiwara, Y. (2010) Behavioural rhythms of hydrocarbon seep fauna in relation to internal tides. Marine Ecology Progress Series 418, 4756.Google Scholar
Anderson, M.J. (2001) A new method for non-parametric multivariate analysis of variance. Australian Ecology 26, 3236.Google Scholar
Arrington, D.A. and Winemiller, K.O. (2003) Diel changeover in sandbank fish assemblages in a neotropical floodplain river. Journal of Fish Biology 63, 442459.CrossRefGoogle Scholar
Aschoff, J. (1981) Freerunning and entrained circadian rhythms. In Aschoff, J. (ed.) Handbook of behavioral neurobiology. Volume 4. Biological rhythms. New York: Plenum, pp. 8193.Google Scholar
Azzurro, E., Moschella, P. and Maynou, F. (2011) Tracking signals of change in Mediterranean fish diversity based on local ecological knowledge. Plos ONE 6, e24885. doi:10.1371/journal.pone.0024885.CrossRefGoogle ScholarPubMed
Azzurro, E., Pais, A., Consoli, P. and Andaloro, F. (2007) Evaluating day–night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Marine Biology 151, 22452253.Google Scholar
Bariche, M., Letourneur, Y. and Harmelin-Vivien, M. (2004) Temporal fluctuations and settlement patterns of native and Lessepsian herbivorous fishes on the Lebanese coast (eastern Mediterranean). Environmental Biology of Fishes 70, 8190.Google Scholar
Bell, J.D. and Harmelin-Vivien, M.L. (1983) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows. 2. Feeding habits. Tethys 11, 114.Google Scholar
Bonney, R., Cooper, C.B., Dickinson, J., Kelling, S., Phillips, T., Kenneth, V., Rosenberg, V. and Shirk, J. (2009) Citizen Science: a developing tool for expanding science knowledge and scientific literacy. BioScience 59, 977984.Google Scholar
Carpentieri, P., Colloca, F., Belluscio, A., Criscoli, A. and Ardizzone, G.D. (2006) Diel feeding periodicity and daily ration of shelf break fish species. Journal of the Marine Biological Association of the United Kingdom 86, 853860.Google Scholar
Chiesa, J.J., Aguzzi, J., García, J.A., Sardà, F. and De la Iglesia, H. (2010) Light intensity determines temporal niche switching of behavioral activity in deep water Nephrops norvegicus (Crustacea: Decapoda). Journal of Biological Rhythms 25, 277287.Google Scholar
Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Austin Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Colmenero, A., Aguzzi, J., Lombarte, A. and Bozzano, A. (2010) Sensory constraints in temporal segregation in two species of anglerfish (Lophius budegassa and L. piscatorius). Marine Ecology Progress Series 416, 255265.Google Scholar
Colton, D.E. and Alevizon, W.S. (1981) Diurnal variability in a fish assemblage of Bahamian coral reef. Environmental Biology of Fishes 6, 341345.CrossRefGoogle Scholar
Copp, G.H. and Jurajda, P. (1993) Do small riverine fish move inshore at night? Journal of Fish Biology 43, 229241.Google Scholar
Curley, B., Kingsford, M.J. and Gillanders, B.M. (2002) Spatial and habitat-related patterns of temperate reef fish assemblages: implications for the design of Marine Protected Areas. Marine and Freshwater Research 53, 11971210.Google Scholar
Dickinson, J.L., Zuckerberg, B. and Bonter, D.N. (2010) Citizen Science as an ecological research tool: challenges and benefits. Annual Review of Ecology, Evolution, and Systematics 41, 149172.Google Scholar
Díez-Noguera, A. (2006) Representación gráfica y análisis de datos en cronobiología. In Madrid-Pérez, J.A. and Rol de Lama, M.A. (eds) Cronobiología básica y clínica. Madrid: Editec@Red.Google Scholar
Ebeling, A.W. and Bray, R.N. (1976) Day versus night activity of reef fishes in a kelp forest off Santa Barbara, California. Fishery Bulletin 74, 703717.Google Scholar
Evans, S.M., Foster-Smith, J. and Welch, R. (2001) Volunteers assess marine biodiversity. Biologist 48, 168172.Google ScholarPubMed
Fernández, J.R., Hermida, R.C. and Mojón, A. (2009) Chronobiological analysis techniques. Application to blood pressure. Philosophical Transactions of the Royal Society of London 367, 431445.Google Scholar
Fitzpatrick, M., Preisser, E., Ellison, A. and Elkinton, J. (2009) Observer bias and the detection of low-density populations. Ecological Applications 19, 16731679.Google Scholar
Foster-Smith, J. and Evans, S.M. (2003) The value of marine ecological data collected by volunteers. Biological Conservation 2, 199213.Google Scholar
Gillett, D.J., Pondella II, D.J., Freiwald, J., Schiff, K.C., Caselle, J.E., Shuman, C. and Weisberg, S.B. (2012) Comparing volunteer and professionally collected monitoring data from the rocky subtidal reefs of Southern California, USA. Environmental Monitoring and Assessment (2012) 184, 32393257.Google Scholar
Gladstone, W. (2007) Requirements for marine protected areas to conserve the biodiversity of rocky reef fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 17, 7187.Google Scholar
Greenwood, J.J.D. (1994) Trust the wildlife volunteers. Nature 368, 490.Google Scholar
Harmelin-Vivien, M.L. (1982) Ichtyofaune des herbiers de posidonies du Parc National de Port-Cros: I. composition et variations spatio-temporelles. Travaux Scientifiques du Parc National de Port-Cros 8, 6992.Google Scholar
Harmelin-Vivien, M.L., Harmelin, J.G., Chauvet, C., Duval, C. and Galzin, R. (1985) Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Revue d'Ecologie (la Terre et la Vie) 40, 467539.Google Scholar
Helfman, G.S. (1993) Fish behaviour by day, night and twilight. In Pitcher, T.J. (ed.) Behaviour of teleost fishes. London: Chapman & Hall, pp. 479512.CrossRefGoogle Scholar
Hobson, E.S. (1965) Diurnal–nocturnal activity of some inshore fishes in the Gulf of California. Copeia 3, 291302.Google Scholar
Jadot, C., Ovidio, M. and Voss, J. (2002) Diel activity of Sarpa salpa (Sparidae) by ultrasonic telemetry in a Posidonia oceanica meadow of Corsica (Mediterranean Sea). Aquatic Living Resources 15, 343350.Google Scholar
Jadot, C., Donnay, A., Acolas, M.L., Cornet, Y. and Bégout Anras, M.L. (2006) Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: Sparidae) in the Mediterranean Sea. ICES Journal of Marine Science 63, 128139.Google Scholar
Kasai, M., Yamamoto, T. and Kiyohara, S. (2009) Circadian locomotor activity in Japanese sea catfish Plotosus lineatus . Fisheries Science 75, 8189.Google Scholar
Last, K.S., Bailhache, T., Kramer, C., Kyriacou, C.P., Rosato, E. and Olive, P.J. (2009) Tidal, daily, and lunar–day activity cycles in the marine polychaete Nereis virens . Chronobiology International 26, 167183.Google Scholar
Letourneur, Y., Darnaude, A., Salen-Picard, C. and Harmelin-Vivien, M. (2001) Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanologica Acta 24, 273285.CrossRefGoogle Scholar
Lincoln-Smith, M.P. (1988) Effects of observer swimming speed on sample counts of temperate rocky reef fish assemblages. Marine Ecology Progress Series 43, 223231.Google Scholar
March, D., Palmer, M., Alós, J., Grau, A. and Cardona, F. (2010) Short-term residence, home range size and diel patterns of the painted comber Serranus scriba . Marine Ecology Progress Series 400, 195206.Google Scholar
Marques, M.D. and Waterhouse, J.M. (2004) Rhythms and the ecology—do chronobiologists still remember nature? Biological Rhythms Research 35, 12.Google Scholar
Morgan, E. (2004) Ecological significance of biological clocks. Biological Rhythms Research 35, 312.CrossRefGoogle Scholar
Mrosovsky, N. and Hattar, S. (2005) Diurnal mice (Mus musculus) and other examples of temporal niche switching. Journal of Comparative Physiology 191, 10111024.CrossRefGoogle ScholarPubMed
Naylor, E. (2005) Chronobiology: implications for marine resources exploitation and management. Scientia Marina 69, 157167.Google Scholar
Palmer, J.D. (2000) The clocks controlling the tide-associated rhythms of intertidal animals. BioEssays 22, 3237.Google Scholar
Pattengill-Semmens, C.V. and Semmens, B.X. (2003) Conservation and management applications of the reef volunteer fish monitoring program. Environmental Monitoring and Assessment 81, 4350.CrossRefGoogle ScholarPubMed
Piet, G.J. and Guruge, W.A.H.P. (1997) Diel variation in feeding and vertical distribution of ten co-occurring fish species: consequences for resource partitioning. Environmental Biology of Fishes 50, 293307.Google Scholar
Reebs, S.G. (2002) Plasticity of diel and circadian activity rhythms in fishes. Reviews in Fish Biology and Fisheries 12, 349371.Google Scholar
Schimmel, M. (2001) Emphasizing difficulties in the detection of rhythms with Lomb–Scargle periodograms. Biological Rhythms Research 32, 341345.Google Scholar
Silvertown, J. (2009) A new dawn for citizen science. Trends in Ecology and Evolution 24, 467471.Google Scholar
Spyker, K.A. and Van den Berghe, E.P. (1995) Diurnal abundance patterns of Mediterranean fishes assessed on fixed transects by scuba divers. Transactions of the American Fishery Society 124, 216224.Google Scholar
Stallings, C. (2009) Fishery-independent data reveal negative effect of human population density on Caribbean predatory fish communities. PLoSOne 4, e5333.Google Scholar
Thompson, A.A. and Mapstone, B.D. (1997) Observer effects and training in underwater visual surveys of reef fishes. Marine Ecology Progress Series 154, 5363.Google Scholar
Videler, J.J. (1986) Sleep under sand cover of the labrid fish Coris julis . In Koella, W.P., Obál, F. and Schulz, H. (eds) Phylogeny of sleep. Stuttgart: Fischer Verlag, pp. 145147.Google Scholar
Ward-Paige, C.A., Mora, C., Lotze, H.K., Pattengill-Semmens, C.V., McClenachan, L. and Arias-Castro, E. (2010) Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures. PLoSOne 5, e11968.Google Scholar
Ward-Paige, C.P., Pattengill-Semmens, C., Myers, R.A. and Lotze, H.K. (2011) Spatial and temporal trends in yellow stingray abundance: evidence from diver surveys. Environmental Biology of Fishes 90, 263276.Google Scholar
Williams, I.D., Walsh, W.J., Tissot, B.N. and Hallacher, L.E. (2006) Impact of observers' experience level on counts of fishes in underwater visual surveys. Marine Ecology Progress Series 310, 185191.Google Scholar
Willis, T.J., Badalamenti, F. and Milazzo, M. (2006) Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology 331, 108120.Google Scholar
Yammouni, R., Bozzano, A. and Douglas, R.H. (2011) A latitudinal cline in the efficacy of endogenous signals: evidence derived from retinal cone contraction in fish. Journal of Experimental Biology 214, 501508.Google Scholar