Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T10:52:24.918Z Has data issue: false hasContentIssue false

Differential coloration patterns in the intertidal crab Neohelice (=Chasmagnathus) granulata

Published online by Cambridge University Press:  23 December 2010

Agustina Méndez Casariego*
Affiliation:
Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires, Argentina
Tomás Luppi
Affiliation:
Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires, Argentina
Oscar Iribarne
Affiliation:
Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, CP C1033AAJ, Ciudad de Buenos Aires, Argentina
*
Correspondence should be addressed to: A.M. Casariego, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, B7600WAG, Mar del Plata, Argentina email: mendezc@mdp.edu.ar

Abstract

Many crustaceans with spatial segregation may present differential body coloration depending on the habitat they inhabit. Since crustaceans are unable to synthesize carotenoids, individuals must acquire them from their diet, so diet changes can modify individual coloration. The burrowing crab Neohelice (=Chasmagnathus) granulata inhabits the intertidal, from the uppermost parts of salt marshes to the lowest mudflat zones with a spatial segregation of different size-classes. They are primarily deposit feeders in mud flats and herbivorous–detritivorous in the salt marsh. We analysed the effect of intermoult length on the carapace colour of N. granulata, and the changes in carapace colour with crab size and zone. Crab colour varied between unvegetated and vegetated areas. Some of these differences were in part caused by colour changes related to crab size. Larger crabs show less intensive colours, and given that they inhabit the upper part of the intertidal a differential coloration pattern occurred between zones. In field experiments intermoult duration affected crab colour and some body regions analysed showed differences between zones unrelated to size.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arredondo-Figueroa, J., Pedroza-Islas, R., Ponce-Palafox, J.T. and Vernon-Carter, E. (2003) Pigmentation of the Pacific white shrimp (Litopenaeus vannamei, Boone 1931) with esterified and saponified carotenoids from red chili (Capsicum annuum) in comparison to astaxanthin. Revista Mexicana de Ingenieria Química 2, 101108.Google Scholar
Beck, M.W., Heck, K.L. Jr, Able, K.W., Childers, D.L., Eggleston, D.B., Gillanders, B.M., Halpern, B., Hays, C.J., Hoshino, K., Minello, T.J., Orth, R.J., Sheridan, P.J. and Weinstein, M.P. (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51, 633641.CrossRefGoogle Scholar
Bortolus, A., Schwindt, E. and Iribarne, O. (2002) Positive plant–animal interactions in the high marsh of an Argentinean coastal lagoon. Ecology 83, 733742.Google Scholar
Boschi, E.E. (1964) Los crustáceos decápodos Brachyura del litoral bonaerense. Boletín del Instituto Biologia Marina 6, 199.Google Scholar
Botto, F., Valiela, I., Iribarne, O., Martinetto, P. and Alberti, J. (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Marine Ecology Progress Series 293, 155164.CrossRefGoogle Scholar
Carr, S.D., Tankersley, R.A., Hench, J.L., Forward, R.B. and Luettich, R.A. (2004) Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration. Estuarine, Coastal and Shelf Science 60, 567579.CrossRefGoogle Scholar
Charmantier, G., Giménez, L., Charmantier-Daures, M. and Anger, K. (2002) Ontogeny of osmoregulation, physiological plasticity and larval export strategy in the grapsid crab Chasmagnathus granulata (Crustacea, Decapoda). Marine Ecology Progress Series 229, 185194.CrossRefGoogle Scholar
Chien, Y.-H. and Jeng, S.C. (1992) Pigmentation of kuruma prawn, Penaeus japonicus Bate, by various pigment sources and levels and feeding regimes. Aquaculture 102, 333346.CrossRefGoogle Scholar
Christy, J.H. and Salmon, M. (1984) Ecology and evolution of mating systems of fiddler crabs (genus Uca). Biological Reviews 59, 483509.CrossRefGoogle Scholar
Crane, J. (1975) Fiddler crabs of the world. Ocypodidae: genus Uca. Princeton, NJ: Princeton University Press.Google Scholar
Davenport, J., Healy, A., Casey, N. and Jeffron, J. (2004) Diet-dependent UVAR and UVBR resistance in the high shore harpacticoid copepod Tigriopus brevicornis. Marine Ecology Progress Series 276, 299303.CrossRefGoogle Scholar
Detto, T., Zeil, J., Magrath, R.D. and Hunt, S. (2004) Sex, size and colour in a semi-terrestrial crab, Heloecius cordiformis (H. Milne-Edwards, 1837). Journal of Experimental Marine Biology and Ecology 302, 115.CrossRefGoogle Scholar
Detto, T., Hemmi, J.M. and Backwell, P.R. (2008) Coloration and colour changes of the fiddler crab, Uca capricornis: a descriptive study. PLoS ONE 3, e1629.CrossRefGoogle ScholarPubMed
Edge, R., McGarvey, D.J. and Truscott, T.G. (1997) The carotenoids as anti-oxidants: a review. Journal of Photochemistry and Photobiology B: Biology 41, 189200.CrossRefGoogle ScholarPubMed
Etherington, L., Eggleston, D.B. and Stockhausen, W.T. (2003) Partitioning loss rates of early juvenile blue crabs from seagrass habitats into mortality and emigration. Bulletin of Marine Science 72, 371391.Google Scholar
Halperin, J., Ansaldo, M., Pellerano, G.N. and Luquet, C.M. (2000) Bimodal breathing in the estuarine crab Chasmagnathus granulatus Dana 1851—physiological and morphological studies. Comparative Biochemistry and Physiology Part A 126, 341349.CrossRefGoogle ScholarPubMed
Hartnoll, R. (2001) Growth in Crustacea—twenty years on. Hydrobiologia 449, 111122.CrossRefGoogle Scholar
Heck, K.L. Jr, Hays, G. and Orth, R.J. (2003) Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253, 123136.CrossRefGoogle Scholar
Hines, A.H., Lipcius, R.N. and Haddon, A.M. (1987) Population dynamics and habitat partitioning by size, sex and molt stage of blue crabs Callinectes sapidus in a subestuary of central Chesapeake Bay. Marine Ecology Progress Series 36, 5564.CrossRefGoogle Scholar
Hunt, H. and Scheibling, R. (1997) Role of post settlement mortality in recruitment of benthic marine invertebrates. Marine Ecology Progress Series 155, 269301.CrossRefGoogle Scholar
Huntingford, F.A., Taylor, A., Smith, I.P. and Thorpe, K.E. (1995) Behavioural and physiological studies of swimming crabs. Journal of Experimental Marine Biology and Ecology 193, 2139.CrossRefGoogle Scholar
Hultgren, K.M. and Stachowicz, J. (2008) Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia 155, 519528.CrossRefGoogle ScholarPubMed
Lipcius, R., Rochelle, T., Seitz, D., Seebo, M. and Colon-Carrion, D. (2005) Density, abundance and survival of the blue crab in seagrass and unstructured salt marsh nurseries of Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 319, 6980.CrossRefGoogle Scholar
Iribarne, O., Bortolus, A. and Botto, F. (1997) Between-habitats differences in burrow characteristics and trophic modes in the south-western Atlantic burrowing crab Chasmagnathus granulata. Marine Ecology Progress Series 155, 137145.CrossRefGoogle Scholar
Isacch, J.P., Costa, C., Rodríguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, D.A. and Iribarne, O. (2006) Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33, 888900.CrossRefGoogle Scholar
Luppi, T., Spivak, E.D., Bas, C.C. and Anger, K. (2004) Molt and growth of an estuarine crab, Chasmagnathus granulatus (Brachyura: Varunidae), in Mar Chiquita coastal lagoon, Argentina. Journal of Applied Ichthyology 20, 333344.CrossRefGoogle Scholar
Luquet, C.M., Cervino, C.O., Ansaldo, M., Carrera Pereyra, V., Kocmur, S. and Dezi, R.E. (1998) Physiological response to emersion in the amphibious crab Chasmagnathus granulata Dana (Decapoda Grapsidae): biochemical and ventilatory adaptations. Comparative Biochemistry and Physiology Part A 121, 385393.CrossRefGoogle Scholar
McGaw, I.J. and Naylor, E. (1992) Salinity preference of the shore crab Carcinus maenas in relation to coloration during inter-moult and to prior acclimation. Journal of Experimental Marine Biology and Ecology 155, 145159.CrossRefGoogle Scholar
Melville-Smith, R., Wing Cheng, Y. and Thomson, A. (2003) Factors affecting colour change in ‘white’ western rock lobsters, Panulirus cygnus. Journal of Experimental Marine Biology and Ecology 291, 111129.CrossRefGoogle Scholar
Minello, T.J., Able, K.W., Weinstein, M.P. and Hays, C.G. (2003) Salt marshes as nurseries for nekton: testing hypotheses on density, growth and survival through meta-analysis. Marine Ecology Progress Series 246, 3959.CrossRefGoogle Scholar
Moeller, R.E., Gilroy, S., Williamson, C.E. and Grad, G. (2005) Dietary acquisition of photoprotective compounds (mycosporine-like amino acids, carotenoids) and acclimation to ultraviolet radiation in a freshwater copepod. Limnology and Oceanography 50, 427439.CrossRefGoogle Scholar
Rao, K.R. (1985) Pigmentary effectors. In Bliss, D.E. and Mantel, L.H. (eds) The biology of Crustacea, integuments, pigments, and hormonal processes, Volume 9. New York: Academic Press, pp. 395462.CrossRefGoogle Scholar
Reid, D.G., Abelló, P., Kaiser, M.J. and Warman, C.G. (1997) Carapace colour, inter-moult duration and the behavioural and physiological ecology of the shore crab Carcinus maenas. Estuarine, Coastal and Shelf Science 44, 211302.CrossRefGoogle Scholar
Reta, R., Martos, P., Perillo, G., Piccolo, M.C. and Ferrante, A. (2001) Características hidrográficas del estuario de la laguna Mar Chiquita. In Iribarne, O. (ed.) Reserva de biosfera Mar Chiquita: características, físicas, biológicas y ecológicas. Mar del Plata, Argentina: Editorial Martin, pp. 3152.Google Scholar
Sagardes, G., Castillo, R. and Segonzac, M. (2000) Carotenoid pigments and trophic behaviour of deep-sea shrimps (Crustacea, Decapoda, Alvinocarididae) from a hydrothermal area of the Mid-Atlantic Ridge. Comparative Biochemistry and Physiology Part A 127, 293300.Google Scholar
Silbiger, N. and Munguia, P. (2008) Carapace color change in Uca pugilator as a response to temperature. Journal of Experimental Marine Biology and Ecology 355, 4146.CrossRefGoogle Scholar
Silva, P., Luppi, T., Spivak, E. and Anger, K. (2009) Reproductive traits of an estuarine crab, Neohelice (=Chasmagnathus) granulata (Brachyura: Grapsoidea: Varunidae), in two contrasting habitats. Scientia Marina 73, 117127.Google Scholar
Sneddon, L., Huntingford, F. and Taylor, A. (1997) Weapon size vs. body size as predictor of winning fights between shore crabs, Carcinus maenas (L.). Behavioral Ecology and Sociobiology 41, 237242.CrossRefGoogle Scholar
Spivak, E., Anger, K., Luppi, T., Bas, C. and Ismael, D. (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgoländer Meeresuntersuchungen 48, 5978.CrossRefGoogle Scholar
Stuart-Fox, D. and Moussalli, A. (2009) Camouflage, communication and thermoregulation: lessons from colour changing organisms. Philosophical Transactions of the Royal Society of London B 364, 463470.CrossRefGoogle ScholarPubMed
Styrishave, B., Rewitz, K. and Andersen, O. (2004) Frequency of moulting by shore crabs Carcinus maenas (L.) changes their colour and their success in mating and physiological performance. Journal of Experimental Marine Biology and Ecology 313, 317336.CrossRefGoogle Scholar
Thurman, C.L. (1988) Rhythmic physiological color change in Crustacea: a review. Comparative Biochemistry and Physiology Part C 91, 171185.CrossRefGoogle Scholar
Thurman, C.L. (1990) Adaptative coloration in Texas fiddler crab (Uca). In Wicksten, M. (ed.) Adaptative coloration in invertebrates: Proceedings of a Symposium of the American Society of Zoologists. College Station, TX: Texas A&M University Press, pp. 109125.Google Scholar
Tlusty, M. and Hyland, C. (2005) Astaxanthin deposition in the cuticle of juvenile American lobster (Homarus americanus): implications for phenotypic and genotypic coloration. Marine Biology 147, 113119.CrossRefGoogle Scholar
Wade, N., Goulter, K., Wilson, K., Hall, M. and Degnan, B. (2005) Esterified astaxanthin levels in lobster epithelia correlate with shell colour intensity: potential role in crustacean shell colour formation. Comparative Biochemistry and Physiology Part B 141, 307313.CrossRefGoogle ScholarPubMed
Zar, J.H. (1999) Biostatistical analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar