Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T11:56:56.617Z Has data issue: false hasContentIssue false

The effect of algal blooms on fish in their inshore nursery grounds in the Gulf of Gdańsk

Published online by Cambridge University Press:  12 September 2017

Anna J. Pawelec*
Affiliation:
Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Mariusz R. Sapota
Affiliation:
Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
Justyna Kobos
Affiliation:
Department of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland
*
Correspondence should be addressed to: A.J. Pawelec Department of Marine Biology and Ecology, Institute of Oceanography, University of Gdańsk, Al. M. Piłsudskiego 46, 81-378 Gdynia, Poland email: anna.pawelec@ug.edu.pl

Abstract

Studies of cyanobacterial bloom dynamics show that the highest biomass accumulation of Nodularia spumigena is observed in the shallowest area of the Gulf of Gdańsk in summer. In the same region and time, the highest fish abundance is observed. Mostly young individuals of gobies, small sandeel, flounder, three-spine stickleback and young herring occur. In this work we compare how toxic blooms of cyanobacteria influence the number and structure of fish communities in a coastal zone. The results obtained in our study were rather unexpected. More fish species were caught and the biomass of fish was higher during a bloom than in a month following the sampling (no bloom).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baganz, D., Staaks, G., Pflugmacher, S. and Steinberg, C.E.W. (2004) Comparative study of microcystin-LR-induced behavioral changes of two fish species, Danio rerio and Leucaspius delineatus . Environmental Toxicology 19, 564570.Google Scholar
Baker, R. and Sheaves, M. (2007) Shallow-water refuge paradigm: conflicting evidence from tethering experiments in a tropical estuary. Marine Ecology Progress Series 349, 1322.Google Scholar
Bzoma, S. (2004) Kormoran Phalacrocorax carbo (L.) w strukturze troficznej ekosystemu Zatoki Gdańskiej. Rozprawa doktorska, Uniwersytet Gdański.Google Scholar
CEN (2005) Water quality – sampling of fish with multi-mesh gillnets (English version prEN 14757:2013). Brussels: European Committee for Standardization.Google Scholar
Edler, L. (1979) Recommendations for marine biological studies in the Baltic Sea. Phytoplankton and chlorophyll. Baltic Marine Biologists Publication 5, 3138.Google Scholar
El-Shehawy, R. and Gorokhova, E. (2013) The bloom-forming cyanobacterium Nodularia spumigena: a peculiar nitrogen-fixer in the Baltic Sea food webs. In Ferrão-Filho, A. and Da, S. (eds) Cyanobacteria: ecology, toxicology and management. Nova Science Publishers, pp. 4771.Google Scholar
Ernst, B. (2008) Investigations on the impact of toxic cyanobacteria on fish – as exemplified by coregonids in Lake Ammersee. PhD thesis. University of Konstanz, Germany.Google Scholar
Ernst, B., Hoeger, S.J., O'Brien, E. and Dietrich, D.R. (2007) Physiological stress and pathology in European whitefish (Coregonus lavaretus) induced by subchronic exposure to environmentally relevant densities of Planktothrix rubescens . Aquatic Toxicology 82, 1526.Google Scholar
Godlewska, M., Izydorczyk, K., Kaczkowski, Z., Jóźwik, A., Długoszewski, B., Ye, S., Lian, Y. and Guillard, J. (2015) Do fish and blue-green algae blooms coexist in space and time? Fisheries Research 173, 93100.Google Scholar
Henriksen, P. (2005) Estimating nodularin content of cyanobacterial blooms from abundance of Nodularia spumigena and its characteristic pigments – a case study from the Baltic entrance area. Harmful Algae 4, 167178.Google Scholar
ICES (2012) Report of the ICES – IOC Working Group on Harmful Algal Bloom Dynamics (WGHABD), 24–27 April 2012. Oban, Scotland, UK. ICES CM 2012/SSGHIE:09, 57 pp.Google Scholar
Jakubas, D. and Mioduszewska, A. (2005) Diet composition and food consumption of the grey heron (Ardea cinerea) from breeding colonies in northern Poland. European Journal of Wildlife Research 51, 191198.Google Scholar
Kahru, M., Savchuk, O.P. and Elmgren, R. (2007) Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Marine Ecology Progress Series 343, 1523.Google Scholar
Karjalainen, M. (2005) Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs. Finnish Institute of Marine Research – Contributions 10, 34.Google Scholar
Karjalainen, M., Engström-Öst, J., Korpinen, S., Peltonen, H., Pääkkönen, J., Rönkkönen, S., Suikkanen, S. and Viitasalo, M. (2007) Ecosystem consequences of cyanobacteria in the Northern Baltic Sea. Ambio 36, 195202.Google Scholar
Karlsson, K., Sipiä, V., Kankaanpää, H. and Meriluoto, J. (2003) Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders. Journal of Chromatography B 784, 243253.Google Scholar
Landsberg, J.H. (2002) The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10, 113390.Google Scholar
Lizinska, A.J. (2002) Seasonal and daily distribution of commercial and non-commercial fish in shallow inshore waters of the Gulf of Gdańsk. Oceanological Studies 31, 3142.Google Scholar
Mastin, B.J., Rodgers, J.H. Jr and Deardorff, T.L. (2002) Risk evaluation of cyanobacteria dominated algal blooms in a North Louisiana reservoir. Journal of Aquatic Ecosystem Stress and Recovery 9, 103114.Google Scholar
Mazur-Marzec, H., Krężel, A., Kobos, J. and Plinski, M. (2006) Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year survey. Oceanologia 48, 255273.Google Scholar
Mazur-Marzec, H., Sutryk, K., Hebel, A., Hohlfeld, N., Pietrasik, A. and Błaszczyk, A. (2015) Nodulatia spumigena peptides – accumulation and effect on aquatic invertebrates. Toxins 7, 44044420.Google Scholar
Mazur-Marzec, H., Sutryk, K., Kobos, J., Hebel, A., Hohfeld, N., Błaszczyk, A., Toruńska, A., Kaczkowska, M.J., Łysiak-Pastuszak, E., Kraśniewski, W. and Jasser, I. (2013) Occurence of cyanobacteria and cyanotoxin in the Southern Baltic Proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701, 235252.CrossRefGoogle Scholar
Mazur-Marzec, H., Tymińska, A., Szafranek, J. and Pliński, M. (2007) Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, Southern Baltic Sea. Environmental Toxicology 22, 101111.CrossRefGoogle ScholarPubMed
Meager, J.J., Solbakken, T., Utne-Palm, A.C. and Oen, T. (2005) Effects of turbidity on the reaction distance, search time and foraging success of juvenile Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 62, 19781984.Google Scholar
Møgelhøj, M.K., Hansen, P.J., Henriksen, P. and Lundholm, N. (2006) High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. Aquatic Microbial Ecology 43, 4354.Google Scholar
Olenina, I., Hajdu, S., Andersson, A., Edler, L., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I. and Niemkiewicz, E. (2006) Biovolumes and size-classes of phytoplankton in the Baltic. Baltic Sea Environment Proceedings (Hels. Comm. Hels.) 106, 1144.Google Scholar
Pääkkönen, J-P., Rönkkönen, S., Karjalainen, M. and Viitasalo, M. (2008) Physiological effects in juvenile three-spined sticklebacks feeding on toxic cyanobacterium Nodularia spumigena – exposed zooplankton. Journal of Fish Biology 72, 485499.Google Scholar
Paerl, H.W. and Otten, T.G. (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65, 9951010.Google Scholar
Persson, K-J., Stenroth, P. and Legrand, C. (2011) Effects of the filamentous cyanobacterium Nodularia of fitness and feeding behaviour of young-of-the-year (YOY) Eurasian perch (Perca fluviatilis). Toxicon 57, 10331040.Google Scholar
Psuty, I. (2011) Monitoring ichtiofauny 2011 dla potrzeb RDW metodyka dla stacji badawczych (punktów pomiarowo kontrolnych) w wodach przybrzeżnych. Morski Instytut Rybacki.Google Scholar
Sapota, M.R. (2004) Round goby (Neogobius melanostomus) fishy invader in the Gulf of Gdańsk – a new case of general species introduction into the Baltic. Hydrobiologia 514, 219224.Google Scholar
Schlüter, L., Garde, K. and Kaas, H. (2004) Detection of the toxic cyanobacteria Nodularia spumigena by means of a 4-keto-myxoxanthophyll-like pigment in the Baltic Sea. Marine Ecology Progress Series 275, 6978.Google Scholar
Sipiä, V., Kankaanpää, H., Lahti, K., Carmichael, W.W. and Meriluoto, J. (2001a) Detection of nodularin in flounders and cod from the Baltic Sea. Environmental Toxicology 16, 121126.Google Scholar
Sipiä, V., Neffling, M.-R., Metcalf, J.S., Nybom, S.M.K., Meriluoto, J.A.O. and Codd, G.A. (2008) Nodularin in feathers and liver of eiders (Somateria mollissima) caught from the western Gulf of Finland in June–September 2005. Harmful Algae 7, 99105.Google Scholar
Sipiä, V.O., Kankaanpää, H.T., Flinkman, J., Lahti, K. and Meriluoto, J.A.O. (2001b) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environmental Toxicology 16, 330336.Google Scholar
Skóra, K.E. (1993) Ichtiofauna. In Korzeniowski, K. (ed.) Zatoka Pucka. Gdynia: Fundacja Rozwoju Uniwersytetu Gdańskiego, pp. 455467.Google Scholar
Skóra, K.E. (2000) Zmiany w ichtiofaunie Zatoki Gdańskiej i Puckiej na tle zmian wybranych elementów ekosystemu. In Rocznik Helski 1, 115146.Google Scholar
Sotton, B., Anneville, O., Cadel-Six, S., Domaizon, I., Krys, S. and Guillard, J. (2011) Spatial match between Planktothrix rubescens and whitefish in a mesotrophic pre-alpine lake: evidence of toxins accumulation. Harmful Algae 10, 749758.Google Scholar
Sotton, B., Domaizon, I., Anneville, O., Cattanéo, F. and Guillard, J. (2014) Nodularin and cylindrospermopsin: a review of their effects on fish. Reviews in Fish Biology and Fisheries 25, 119. doi: 10.1007/s11160-014-9366-6.Google Scholar
Srikanth, K., Pereira, E., Duarte, A.C. and Ahmad, I. (2014) Glutathione and its dependent enzymes’ modulatory responses to toxic metals and metalloids in fish – a review. Environmental Science and Pollution Research 20, 21332149.Google Scholar
Terorde, A.I. (2008) Variation in the use of intermittently open estuaries by birds: a study of four estuaries in the Eastern Cape, South Africa. MSc thesis. University of Cape Town, Cape Town.Google Scholar
Tweedley, J.R., Warwick, R.M. and Potter, I.C. (2016) The contrasting ecology of macrotidal and microtidal estuaries. Oceanography and Marine Biology: An Annual Review 54, 7379.Google Scholar
Utne-Palm, A.C. (2002) Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine and Freshwater Behaviour and Physiology 35, 111128.Google Scholar
Yeoh, E.D., Valesini, F.J., Hallett, C.S., Abdo, D.A. and Williams, J. (2017) Diel shifts in the structure and function of nearshore estuarine fish communities. Journal of Fish Biology 90, 12141243.Google Scholar