Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T19:48:56.126Z Has data issue: false hasContentIssue false

The Effect of Synchronous Moulting on Body Copper and Zinc Concentrations in Four Species of Talitrid Amphipods (Crustacea)

Published online by Cambridge University Press:  11 May 2009

J. M. Weeks
Affiliation:
School of Biological Sciences, Queen Mary & Westfield College, University of London, Mile End Road, London, El 4NS Institute of Biology, University of Odense, Campusvej–55, DK–5230, Odense M, Denmark
P. G. Moore
Affiliation:
University Marine Biological Station, Millport, Isle of Cumbrae, Scotland, KA28 OEG

Extract

Analysis of the total copper and zinc content of four species of talitrid amphipods, Orchestia gammarellus, O. mediterranea, Talitrus saltator and Talorchestia deshayesii throughout a complete spring/neap tidal cycle failed to reveal any significant effects of moulting upon body copper or zinc in any species. Moulting was synchronized to the lunar cycle only in T. saltator, taking place 5–7 days prior to a new moon. The fact that no significant changes in body metal concentrations took place with the moult cycle is discussed in relation to the use of talitrid amphipods in copper and zinc biomonitoring programmes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alikhan, M.A. 1972. Haemolymph and hepatopancreas copper inPorcellio laevis Latreille (Porcellionidae, Peracarida). Comparative Biochemistry and Physiology, 42A, 823832.CrossRefGoogle Scholar
Charniaux-Cotton, H. 1957. Croissancé régenération et detérminisme endocrinien des cáràcteres sexuels d'Orchestia gammarella (Pallas) Crustacé: Amphipode. Annales des Sciences Naturelles (Zoologie et Biologie Animale), 19, 411559.Google Scholar
Chamiaux-Legrand, H. 1952. Le cyclé d'intermué des amphipodes et ses particulantes chez les formes terrestrès (Talitridae). Archives de Zoologie Expérimental et Générale, 88, 179205.Google Scholar
Clausen, I.H.S. 1984. Lead (Pb) in spiders: a possible measure of atmospheric Pb pollution. Environmental Pollution, 8B, 217230.Google Scholar
Depledge, M.H. & Bjerregaard, P. 1989. Haemolymph protein composition and copper levels in decapod crustaceans. Helgoländer wissenschaftliche Meersuntersuchungen, 43, 207223.CrossRefGoogle Scholar
Djangmah, J.S. & Grove, D.J. 1970. Blood and hepatopancreas copper in Crangon vulgaris (Fabricius). Comparative Biochemistry and Physiology, 32, 733745.CrossRefGoogle Scholar
Drach, P. 1939. Mué et cyclé d'intermué chez les crustacé Decapodes. Annales de l'lnstitut Oceanographique, 19, 103391.Google Scholar
Graf, F. 1986. Fine determination of the molt stages in Orchestia cavimana Heller (Crustacea: Amphipoda). journal of Crustacean Biology, 6, 666678.CrossRefGoogle Scholar
Greenaway, P. 1985. Calcium balance and moulting in the Crustacea. Biological Reviews, 60, 425454.CrossRefGoogle Scholar
Hopkin, S.P. 1989. Ecophysiology of Metals in Terrestrial Invertebrates. London: Elsevier Applied Science.Google Scholar
Hopkin, S.P. & Martin, M.H. 1984. The assimilation of zinc, cadmium and copper by the centipede Lithobius variegatus (Chilopoda). Journal of Applied Ecology, 21, 235240.CrossRefGoogle Scholar
Joosse, E.N.G. & Buker, J.B. 1979. Uptake and excretion of lead by litter dwelling Collembola. Environmental Pollution, 18, 235240.Google Scholar
Moore, P.G. & Rainbow, P.S. 1987. Copper and zinc in an ecological series of talitroidean Amphipoda (Crustacea). Oecologia, 73, 120126.CrossRefGoogle Scholar
Rainbow, P.S. & Moore, P.G. 1986. Comparative metal analyses in amphipod crustaceans. Hydrobiologia, 141, 273289.CrossRefGoogle Scholar
Rainbow, P.S. & Moore, P.G. 1990. Seasonal variation in copper and zinc concentrations in three talitrid amphipods (Crustacea). Hydrobiologia, 196, 6572.CrossRefGoogle Scholar
Rainbow, P.S.Moore, P.G. & Watson, D. 1989. Talitrid amphipods as biomonitors for copper and zinc. Estuarine, Coastal and Shelf Science, 28, 567582.CrossRefGoogle Scholar
Weeks, J.M. 1990. The Biology of the Essential Metals Copper and Zinc in an Ecological Series of Talitrid Amphipods. PhD thesis, University of London.Google Scholar
Wieser, W. 1965. Untersuchungen uber die ernahrung und den gesamtstoffwechsel von Porcellio scaber (Crustacea: Isopoda). Pedobiologia, 5, 304331.CrossRefGoogle Scholar
Wieser, W. 1966. Copper and the role of isopods in degradation of organic matter. Science, New York, 153, 6769.CrossRefGoogle ScholarPubMed
Wieser, W. 1967. Conquering terra firma: from the isopod's point of view. Helgoländer Wissenschaftliche Meersuntersuchungen, 15, 282293.CrossRefGoogle Scholar
Wildish, D.J. 1970. Locomotory activity rhythms in some littoral Orchestia (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom, 50, 241252.CrossRefGoogle Scholar
Williams, J.A. 1979. A semi-lunar rhythm of locomotor activity and moult synchrony in the sand-beach amphipod Talitrus saltator. In Proceedings of the 13th European Marine Biology Symposium, Isle of Man, 1978 (ed. E., Naylor and R.G., Hartnoll), pp. 407414. Pergamon Press.Google Scholar
Williamson, D.I. 1949. On the mating and breeding of some semi-terrestrial amphipods. Report of the Dove Marine Laboratory, Cullercoats, Northumberland, (ser. 3), 12, 4963.Google Scholar
Zuckerkandl, E. 1960. Hémocyanine et cuivre chez un crustacé décapode, dans leurs rapports avec le cycle d'intermue. Annales de l'lnstitut Océanographique, 38, 1122.Google Scholar