Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T11:27:18.113Z Has data issue: false hasContentIssue false

Environmental regulation of the estuarine copepods Acartia tonsa and Eurytemora americana during coexistence period

Published online by Cambridge University Press:  30 July 2008

Mónica S. Hoffmeyer*
Affiliation:
Instituto Argentino de Oceanografía (CONICET-UNS), PB 804, B8000FWB Bahía Blanca, Argentina Facultad Regional Bahía Blanca, Universidad Tecnológica Nacional, 11 de Abril 461, 8000 Bahía Blanca, Argentina
Anabela A. Berasategui
Affiliation:
Instituto Argentino de Oceanografía (CONICET-UNS), PB 804, B8000FWB Bahía Blanca, Argentina
Débora Beigt
Affiliation:
Instituto Argentino de Oceanografía (CONICET-UNS), PB 804, B8000FWB Bahía Blanca, Argentina
María C. Piccolo
Affiliation:
Instituto Argentino de Oceanografía (CONICET-UNS), PB 804, B8000FWB Bahía Blanca, Argentina Departamento de Geografía, Universidad Nacional del Sur, San Juan y 12 de Octubre, 8000 Bahía Blanca, Argentina
*
Correspondence should be addressed to: Mónica S. Hoffmeyer, Instituto Argentino de Oceanografía (CONICET-UNS), PB 804, B8000FWB Bahía Blanca, Argentina email: bmhoffme@criba.edu.ar

Abstract

The seasonal dynamics of Acartia tonsa and the invader Eurytemora americana were analysed in relation to the environmental variability occurring from April to November in the Bahía Blanca Estuary. Twice a month, the abundance of eggs, nauplii, copepodites and adults was examined and some environmental variables were recorded. Multivariate statistics (CCA) was applied to analyse the data of variables. Acartia tonsa eggs and nauplii diminished from April–May and they were almost absent between June and September, although a small larval peak could be detected from the end of July to October. All the stages of this species increased in number through spring. Eurytemora americana was registered as from June and only nauplii larvae were observed, with a peak increase during September. Copepodites and adults were observed as from July, increasing in number until peaking at the end of September. The number of all stages of this species decreased abruptly, the whole population disappearing from the plankton. The A. tonsa developmental stages were most positively correlated with temperature, photoperiod and other light variables whereas those of E. americana showed positive correlations with chlorophyll-a and salinity. The gradients of the main environmental factors likely give rise to a certain niche separation facilitating the coexistence of the two copepod populations within the period studied.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambler, J.W. (1985) Seasonal factor affecting egg production and viability of eggs of Acartia tonsa Dana from East Lagoon, Galveston, Texas. Estuarine, Coastal and Shelf Science 20, 743760.CrossRefGoogle Scholar
Antunes, S.C., Abrantes, N. and Gonçalves, F. (2003) Seasonal variation of the abiotic parameters and the cladoceran assemblage of Lake Vela: comparison with previous studies. Annales de Limnologie—International Journal of Limnology 39, 255264.CrossRefGoogle Scholar
Avent, S.R. (1998) Distribution of Eurytemora americana (Crustacea, Copepoda) in the Dwamish River estuary. School of Oceanography, University of Washington, USA. Report of project.Google Scholar
Ban, S. and Minoda, T. (1990) The effect of temperature on the development and hatching of diapause and subitaneous eggs in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. Bulletin of the Plankton Society of Japan Special Volume, 299308.Google Scholar
Biancalana, F., Barría de Cao, M.S. and Hoffmeyer, M.S. (2007) Micro and mesozooplankton composition during winter in Ushuaia and Golondrina Bays (Beagle Channel, Argentina). Brazilian Journal of Oceanography 55, 8395.CrossRefGoogle Scholar
Bousfield, E.L., Filteau, G., O'Neill, M. and Gentes, P. (1975) Population dynamics of zooplankton in the middle St Lawrence estuary. In Cronin, L.E. (ed.) Estuarine research. New York: Academic Press, pp. 325351.Google Scholar
Calliari, D., Andersen, C.M., Thor, P., Gorokhova, E. and Tiselius, P. (2006) Salinity modulates the energy balance and reproductive success of co-occurring copepods Acartia tonsa and A. clausi in different ways. Marine Ecology Progress Series 312, 177188.CrossRefGoogle Scholar
Cervetto, G., Gaudy, R. and Pagano, M. (1999) Influence of salinity on the distribution of Acartia tonsa (Copepoda, Calanoida). Journal of Experimental Marine Biology and Ecology 239, 3345.CrossRefGoogle Scholar
Conover, S.M. (1956) Oceanography of Long Island Sound, 1952–1954. VI. Biology of Acartia clausi and A. tonsa. Bulletin of the Bingham Oceanography Collection 15, 156233.Google Scholar
Deevey, G.B. (1960) The zooplankton of the surface waters of the Delaware Bay region. Bulletin of the Bingham Oceanographic Collection 17, 553.Google Scholar
Dejen, E., Vijverberg, J., Nagelkerke, L.A.J. and Sibbing, E.A. (2004) Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513, 3949.CrossRefGoogle Scholar
Fernández Severini, M.D. and Hoffmeyer, M.S. (2005) Mesozooplankton assemblages in Ushuaia and Golondrina Bays (Beagle Channel, Argentina) during January, 2001. Scientia Marina 69, 2737.CrossRefGoogle Scholar
Freije, R. Asteasuain, R., Sagua de Schmidt, A. and Zavatti, J. (1981) Relación de la salinidad y temperatura del agua con las condiciones hidrometeorológicas en la porción interna del estuario de Bahía Blanca. Contribucion Cientifica Instituto Argentino de Oceanografía 57, Bahía Blanca, Argentina.Google Scholar
Gayoso, A.M. (1998) Long-term phytoplankton studies in the Bahía Blanca estuary, Argentina. ICES Journal of Marine Science 55, 655660.CrossRefGoogle Scholar
Grice, G.D. and Marcus, N.H. (1991) Dormant eggs of marine copepods. Oceanography and Marine Biology: an Annual Review 19, 125140.Google Scholar
Grice, G.D. (1971) The development stages of Eurytemora americana Williams, 1906, and Eurytemora herdmani Thompson & Scott, 1897 (Copepoda, Calanoida). Crustaceana 20, 145158.CrossRefGoogle Scholar
Heron, G.A. (1964) Seven species of Eurytemora (Copepoda) from northwestern North America. Crustaceana 7, 199211.CrossRefGoogle Scholar
Hoffmeyer, M.S. and Prado Figueroa, M. (1997) Integumental structures in the oral field of Eurytemora affinis and Acartia tonsa (Copepoda, Calanoida) in relation to their trophic habits. Crustaceana 70, 257271.CrossRefGoogle Scholar
Hoffmeyer, M.S. (1994) Seasonal succession of Copepoda in the Bahía Blanca Estuary. In Ferrari, F.D. and Bradley, B.P. (eds.) Ecology and morphology of Copepods. D H 102. Hydrobiologia 292/293, 303308.Google Scholar
Hoffmeyer, M.S. (2004) Decadal change in zooplankton seasonal succession in the Bahía Blanca Estuary, Argentina, following introduction of two zooplankton species. Journal of Plankton Research 26, 181189.CrossRefGoogle Scholar
Hoffmeyer, M.S., Berasategui, A.A., Piccolo, M.C., Fernandez Severini, M.D., Menéndez, M.C. and Biancalana, F. (2003) Morfología de huevos de Acartia tonsa y Eurytemora americana (Copepoda, Calanoida). In Abstracts of the V Jornadas Nacionales de Ciencias del Mar and XIII Coloquio Argentino de Oceanografía. Universidad Nacional de Mar del Plata and Instituto Nacional de Investigación y Desarrollo Pesquero, 8–12 December 2003, p. 121. Mar del Plata, Argentina.Google Scholar
Hoffmeyer, M.S., Frost, B.W. and Castro, M.B. (2000) Eurytemora americana Williams, 1906, not Eurytemora affinis (Poppe, 1880), inhabits the Bahía Blanca Estuary, Argentina. Scientia Marina 64, 111113.CrossRefGoogle Scholar
Holmstrup, M., Overgaard, J., Sorensen, T.F., Drillet, G., Hansen, B.W., Ramlov, H. and Engell-Sorensen, K. (2006) Influence of storage conditions on viability of quiescent copepod eggs (Acartia tonsa Dana): effects of temperature, salinity and anoxia. Aquaculture Research 37, 625631.CrossRefGoogle Scholar
Jeffries, H.P. (1962) Salinity–space distribution of the estuarine copepod genus Eurytemora. Internationale Revue der Gesamten Hydrobiologie 47, 291300.CrossRefGoogle Scholar
Katajisto, T. (1996) Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320, 153159.CrossRefGoogle Scholar
Katajisto, T. (2006) Benthic resting eggs in the life cycles of calanoid copepods in the northern Baltic Sea. W. & A. De Nottbeck Foundation Science Report 29, 146.Google Scholar
Katajisto, T., Viitasalo, M. and Koski, M. (1998) Seasonal occurrence and hatching of calanoid eggs in sediments of the northern Baltic Sea. Marine Ecology Progress Series 163, 133143.CrossRefGoogle Scholar
Kiørboe, T. and Sabatini, M. (1994) Reproductive and life cycle strategies in egg-carrying cyclopoid and free spawning calanoid copepods. Journal of Plankton Research 16, 13531366.CrossRefGoogle Scholar
Landry, M.R. (1983) The development of marine calanoid copepods with comment on the isochronal rule. Limnology and Oceanography 28, 614624.CrossRefGoogle Scholar
Lee, C.E. (1999) Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution 53, 14231434.CrossRefGoogle ScholarPubMed
Lepš, J. and Šmilauer, P. (2003) Multivariate analysis of ecological data using CANOCO. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Lorenzen, C.L. (1967) Determination of chlorophyll-a and phaeopigments. Spectrophotometric equations. Limnology and Oceanography 12, 343346.CrossRefGoogle Scholar
Marcus, N.H. (1996) Ecological and evolutionary significance of resting eggs in marine copepods: past, present and future studies. Hydrobiologia 320, 1411–52.CrossRefGoogle Scholar
Marcus, N.H., Lutz, R., Burnett, W. and Cable, P. (1994) Age, viability, and vertical distribution of zooplankton resting eggs from anoxic basin: evidence of an egg bank. Limnology and Oceanography 39, 154158.CrossRefGoogle Scholar
Paffenhöfer, G.A. and Stearns, D.E. (1988) Why is Acartia tonsa (Copepoda; Calanoida) restricted to nearshore environments? Marine Ecology Progress Series 42, 3338.CrossRefGoogle Scholar
Sabatini, M.E. (1989) Ciclo anual del copépodo Acartia tonsa Dana, 1849 en la zona interna de la Bahía Blanca (Pcia. de Buenos Aires, Argentina). Scientia Marina 53, 847856.Google Scholar
Sabatini, M.E. (1990) The develomental stages (copepodids I to VI) of Acartia tonsa Dana, 1849 (Copepoda, Calanoida). Crustaceana 59, 5361.CrossRefGoogle Scholar
Sage, L.E. and Herman, S.S. (1972) Zooplankton of the Sandy Hook Bay Area, N.J. Chesapeake Science 13, 2939.CrossRefGoogle Scholar
Sardiña, P. (2004) Ecología trófica de estadios juveniles de los esciénidos dominantes en el estuario de Bahía Blanca: pescadilla de red (Cynoscion guatucupa) y corvina rubia (Micropogonias furnieri). PhD thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina.Google Scholar
Sullivan, B.K. and McManus, L.T. (1986) Factors controlling seasonal succession of the copepods Acartia hudsonica and A. tonsa in Narragansett Bay, RI: temperature and resting egg production. Marine Ecology Progress Series 28, 121128.CrossRefGoogle Scholar
ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 11671–179.CrossRefGoogle Scholar
ter Braak, C.J.F. and Verdonschot, P.F.M. (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57, 255289.CrossRefGoogle Scholar
Tester, P.A. and Turner, J.T. (1991) Why is A. tonsa restricted to estuarine habitats? Bulletin of the Plankton Society of Japan Special Volume, 603611.Google Scholar
Uye, S.I. and Fleminger, A. (1976) Effects of various environmental factors on egg development of several species of Acartia in Southern California. Marine Biology 38, 252262.CrossRefGoogle Scholar
Zillioux, E.J. and Gonzalez, J.G. (1972) Egg dormancy in a neritic calanoid copepod and its implications to overwintering in boreal waters. In Battaglia, B. (ed.) Proceedings of the Fifth European Marine Biology Symposium. Padova: Piccin Editore, pp. 217230.Google Scholar